Programmer’s Guide

Publication number 16600-97009
Second edition, April 1994

For Safety information, Warranties, and Regulatory
information, see the pages behind the index

© Copyright Hewlett-Packard Company 1987, 1990, 1993, 1994
All Rights Reserved

e

HP 16500B/16501A
Logic Analysis System

In This Book

This programmer’s guide contains general
information, mainframe level commands,
and programming examples for
programming the HP 16500B/16501A
Logic Analysis System. This guide
focuses on how to program the system
over the HP-IB and the RS-232(
interfaces. However, if you have the
optional HP 16500L LAN Interface
Module, you will need to use the

HP 16500L LAN Interface Module
User’s Guide along with this guide to
program the system over the LAN.
Along with the programmer’s guides for
the individual modules, this guide
provides a complete set of programming
information for your system.

Organization

When you received your HP 16500B you
received two binders, Volume 1 and
Volume 2. The Volume 2 binder gives
you a place to insert the module
programmer’s guides when the Volume 1
binder is full.

As you purchase additional measurement
modules, insert their prograrmmer’s
guides in the back of this binder or in the
second binder.

What is in the HP 165008/16500A
Programmer’s Guide?

The HP 16500B/16501A Programmer’s
Guide is organized in three parts.

Message Communication

10

1

12

13

Introduction to Programming

Programming Over HP-IB

Programming Over RS-232C

Programming and

Documentation Conventions

anﬂ Sy#gm Functim_l_s
Status Repaorting

Error Messages
Common Commands
Mainframe Commands
SYSTem Subsystem
MMEMory Subsystem
INTermodule Subsystem
Programming Examples

Index

, .

Part 1 Part 1 consists of chapters 1 through 7 and contains general
information about programming basics, HP-IB and RS-232C interface
requirements, documentation conventions, status reporting, and error
messages. If you are already familiar with IEEE 488.2 programming and
HP-IB or RS-232C, you may want to just scan these chapters. If you are
new to programming logic analyzers you should read part 1.

Chapter 1 is divided into two sections. The first section, "Talking to the
Instrument,” concentrates on program syntax, and the second section,
"Receiving Information from the Instrument," discusses how to send queries
and how to retrieve query resuits from the instrument.

Read either chapter 2, "Programming Over HP-IB," or chapter 3,
"Programming Over RS-232C" for information concerning the physical
connection between the HP 16500B/16501A Logic Analysis System and your
controller.

Chapter 4, "Programming and Documentation Conventions," gives an
overview of all instructions and also explains the notation conventions used
in the syntax definitions and cxamples.

Chapter 5, "Message Communication and Systerm Functions," provides an
overview of the operation of instruments that operate in compliance with the
IEEE 488.2 standard.

Chapter 6 explains status reporting and how it can be used to monitor the
flow of your programs and measurement. process.

Chapter 7 contains error message descriptions.

Part 2 Part 2, chapters 8 through 12, explain each command in the
command set for the mainframe. These chapters are organized in
subsystems with each subsystem representing a front-panel menu.

The commands explained in this part give you access to common cormmands,
mainframe commands, system level commands, disk commands, and
intermodule measurement commands. This part is designed to provide a
concise description of each cornmand.

Part 3 Part 3, chapter 13, contains program examples of actual tasks
that show you how to get started in programming the HP 165008/
16501 A Logic Analysis System at the mainframe level. The complexity of
your programs and the tasks they accomplish are limited only by your
imaginatior. These examples are written in HP BASIC 6.2; however, the
program concepts can be used in any other popular prograrmming
language that allows communications over HP-IB, RS-232C, or the
optional HP 16500L LAN Interface Module.

v

Part 1

Contents

General Information
Introduetion to Programming
Introduction 1-2

Talking to the Logic Analysis System 1-3

Talking to Individual System Modules 1-4
Initialization 1-4

Instruction Syntax 1-§

Output Command 1-6

Device Address 1-7

Instructions 1-7

Instruction Terminator 1-8

Header Types 1-9

Duplicate Keywords 1-10

Query Usage 1-11

Program Header Options 1-12
Parameter Data Types 1-13
Selecting Multiple Subsystems 1-15

Receiving Information from the Logic Analysis Systern 1-16

Response Header Options 1-17

Response Data Formats 1-18

String Variables 1-19

Numeric Base 1-20

Numeric Variables 1-20

Definite-Length Block Response Data 1-2]
Multiple Queries 1-22

System Status 1-23

Contents-1

Contents

2 Programming Over HP-1B

Interface Capabilities 2-3

Command and Data Concepts 2-3
Talk/Listen Addressing 2-3

HP-IB Bus Addressing 2-4

Local, Remote, and Local Lockout 2-5
Bus Commands 2-6

3 Programming Over RS-232C

Interface Operation 3-3

RS-232C Cables 3-3

Minirnum Three-Wire Interface with Software Protocol 3-4
Extended Interface with Hardware Handshake 3-5

Cable Examples 3-6

Configuring the Logic Analysis System Interface 3-9
Interface Capabilities 3-10

RS-232C Bus Addressing 3-11

Lockout Command 3-12

4 Programming and Documentation Conventions

Truncation Rule 4-3

Infinity Representation 4-4

Sequential and Overlapped Commands 4-4
Response Generation 4-4

Syntax Diagrams 4-5

Notation Conventions and Definiticns 4-5
The Command Tree 4-6

Tree Traversal Rules 4-8

Command Set Organization 4-9
Subsystems 4-10

Program Examples 4-12

Contents-2

5

Part 2

Message Communication and System Functions

Protocols 5-3
Syntax Diagrams 5-5
Syntax Overview 5-7

Status Reporting

Event Status Register 6-4

Service Request Enable Register 6-4
Bit Definitions 6-4

Key Features 6-6

Serial Poll 6-8

Parallel Poll 6-9

Polling HP-IB Devices 6-11
Configuring Parailel Poll Responses 6-11
Conducting a Paralle]l Poll 6-12
Disabling Parallel Poll Responses 6-13
HP-IB Commands 6-13

Error Messages

Device Dependent Errors 7-3
Command Errors 7-3
Execution Errors 7-4
Internal Errors 7-4

Query Errors 7-5

Commands

Common Commands

*CLS (Clear Status) 8-b

*ESE (Event Status Enable) 8-6
*ESR (Event Status Register) 8-7
*IDN (Identification Number) 8-9
*IST (Individual Status) 8-9
*OPC (Operation Complete) 8-11
*OPT (Option Identification) 8-12

Contents

Contents-3

10

Contents

*PRE (Parallel Poll Enable Register Enable} 8-13
*RST (Reset) 8-14

*SRE (Service Request Enable) 8-15

*3TH (Status Byte) 8-16

*TRG (Trigger) 8-17

*#TST (Test) 8-18

*WAI (Wait) 8-19

Mainframe Commands

BEEPer 9-6

CAPability 9-7

CARDcage 9-8

CESE (Combined Event Status Enable) 9-10
CESR (Combined Event Status Register) 9-11
EOI (End Or Identify) 9-13

LER (LCL Event Register) 9-13

LOCKout 9-14

MENU 9-15

MESE<N: (Module Event Status Enable) 9-16
MESR<N> (Module Event Status Register) 9-18
RMODe 9-19

RTC (Real-time Clock) 9-20

SELect 9-21

SETColor 9-23

STARt 9-24

STOP 9-25

XWINdow 9-26

SYSTem Subsystem

DATA 10-5

DSP (Display) 10-6
ERRor 10-7
HEADer 10-8
LONGform 106-9
PRINt 10-10
SETup 10-12

Contents-4

11

12

MMEMory Subsystem

AllToload 11-8

CATalog 11-9

CD (Change Directory) 11-10
COPY 11-11

DOWNIoad 11-12

INITialize 11-14

LOAD [:CONFig] 11-15

LOAD :IASSembler 11-16
MKDir (Make Directory) 11-17
MSI (Mass Storage Is) 11-18
PACK 11-19

PURGe 11-20

PWD (Present Working Directoryy 11-21

REName 11-22

STORe [:CONFig] 11-23
UPLoad 11-24

VOLume 11-26

INTermodule Subsystem

INTermodule 12-4
DELete 12-5
HTIMe 12-6
INPort 12-7
[NSert 12-8
PORTEDGE 12-9
PORTLEV 12-10
SKEW«N= 12-11
TREE 12-12
TTIMe 12-13

Contents

Contents-5

Contents

Part 3 Programming Examples

13 Programming Examples

Transferring the Mainframe Configuration 13-3

Checking for Intermodule Measurement Completion 13-6
Sending Queries to the Logic Analysis System 13-7
Getting ASCII Data with PRINt? ALL Query 13-9
Reading the disk with the CATalog? ALL query 13-10
Reading the Disk with the CATalog? Query 13-11
Printing to the disk 13-12

Index

Contents-6

Introduction to Programming

1-1

See Also

Introduction

"This chapter introduces you to the basics of remote programming and
is organized in two sections. The first section, "Talking to the Logic
Analysis System," concentrates on initializing the bus, program
syntax and the elements of a syntax instuction. The second section,
"Receiving Information from the Logic Analysis System," discusses
how queries are sent and how to retrieve query results from the
system.

The programming instructions explained in this book conform to
IEEE Std 488.2-1987, "IEEE Standard Codes, Formats, Protocols, and
Common Commands.” These programming instructions provide a
means of remotely controlling the HP 165008 Logic Analysis System.
There are three general categories of use. You car:

e Set up the system and start measurements

e Retrieve setup information and measurement results from the
measurement modules

e Send measurement data to the measurement modules

The instructions listed in this manual give you access to the functions
of the mainframe. This programming reference is designed to provide
a concise description of each instruction for the mainframe.
Individual modhile instruction descriptions are in the Programmer’s
Guide for each respective module.

Refer to the HP 16500L LAN Intevface Module User’s Guide if you have the
optional HP 16500L LAN Interface Moduie.

1-2

Example

Introduction to Programming

Talking to the Logic Analysis System

In general, computers acting as controllers communicate with the instrument
by sending and receiving messages over a remote interface, such as HP-IB,
RS-232C, or the opticnal Ethernet LAN interface module.

This guide focuses on the HP-IB and R5-232C interfaces, however, if you plan
to cormmunicate over the LAN with the optional HP 16500L LAN Interface
Module, yvou will need to refer to the HP 16500L LAN Interface Module
User’s Guide to understand how to send the commands in this guide.

When programming the HP 1656008 with the HP 16501A Expansion Frame
connected, most of the remote operation of the expansion frame is
transparent. The only time a progamrring command is affected by the
presence of the expansion frame is when the number of slots is specified or
returned from a query.

Instructions for programming the system will normally appear as ASCII
character strings embedded inside the output statements of a "host" language
available on your controller. The host language’s input statements are used
to read in responses from the system. For exarple, HP 9000 Series 300
BASIC uses the OUTPUT statement for sending commands and queries to
the system. After a query is sent, the response can be read in using the
ENTER statement. All programming examples in this manual are presented
in HP BASIC.

This BASIC statement sends a command that causes the logic analyzer’s

machine 1 1o be a state analyzer:

OUTPUT XXX;":MACHINEL:TYPE STATE" <terminator>

Each part of the above statement is explained in this section.

1-3

Introduction to Programming
Talking to Individual System Modules

Example

See Also

Talking to Individual System Modules

Talking to individual system modules within the HP 165008 Logic Analysis
System is done by preceding the module commands with the SELECT
command and the number of the slot in which the desired module is installed.
The mainframe is selected in the same way as an installed module by using
the SELECT 0 command

To select the module in slot 3 use the following:

CUTPUT XXX;":SELECT 3"

Chapter 6, "Mainframe Commands" for more information on the SELECT
command.

Initialization

To make sure the bus and all appropriate interfaces are in a known state,
begin every program with an initialization statement. BASIC provides a
CLEAR command that clears the interface buffer. If you are using HP-IB,
CLEAR will also reset the parser in the logic analysis system. The parser is
the program resident in the logic analysis system that reads the instructions
you send to it from the controller.

After clearing the interface, you could, for example, preset the logic analyzer
module to a known state by loading a predefined configuration file from the
disk.

Refer to your controller manual and programming language reference manual
for information on initializing the interface.

1-4

Intreduction to Programming

Initialization

Example This BASIC statement would load the configuration file "DEFAULT " (if it
exists) into the system.
OUTPUT XXX; " :MMEMORY: LOAD:CONFIG 'DEFAULT o

Example Program This program demonstrates a simple HP BASIC command structure used to
program the logic analysis system,

10 CLEAR XXX !Initialize instrument incerface

20 QUTPUT XXX;":SYSTEM:HEADER ON" !Turr headers on

30 OUTPUT XXX;":SYSTEM:LONGFORM ON" 'Turn longform on

40 DIM Card$({100] !Reserve memory for string variable

50 QUTPUT XXX;":CARDCAGE?" !Verify which modules are loaded

60 ENTER XX¥;Card$S !Enter result in a string variable

70 PRINT Cards !Zrint result of query

80 QUTPUT XXX;":MMEM:LOAD:CONFIC 'TEST &',5" 'Load configuration file

'into module in slo:t E

90 QUTPUT XXX;":SELECT 5" !Select module in slot E

100 OQUTPUT XXX;":MENU 5,3: !Select menu for module in slot E

60 QUTPUT XXX;":RMODE SINGLE®" !Seiect run mode

70 OUTRPUT XXX; " :START" 'Run the measurement

See Also Chapter 11, "MMEMory Subsystem" for more information on the LOAD
cornmand.

Introduction ta Programming
Instruction Syntax

Figure 1-1

Instruction Syntax

To program the system remotely, you must have an understanding of the
command format and structure. The IEEE 488.2 standard governs syntax
rules pertaining to how individual elements, such as headers, separators,
parameters and terminators, may be grouped together to form complete
instructions. Syntax definitions are also given to show how query responses
will be formatted. Figure 1-1 shows the three main syntactical parts of a
typical program statement: Output Command, Device Address, and
Instruction. The instruction is further broken down into three parts:
Instruction header, White space, and Instruction parameters.

INSTR?CTION

QUTPUT XXX:;":SYSTEM:MENU DISPLAY,Z"

OUTPUT COMMAND E ’
DEVICE ADDRESS
INSTRUCTION HEADER
WHITE SPACE
INSTRUCTION PARAMETERS

[alE]

Program Message Syntax

Output Command

The output command depends on the language you choose to use.
Throughout this guide, HP 9000 Series 300 BASIC 6.2 is used in the
programming examples. If you use another language, you will need to find
the equivalents of BASIC Commands, like OUTPUT, ENTER and CLEAR in
order to convert the examples. The instructions are always shown between
the double quotes.

1-6

Introduction to Programming
Device Address

Device Address

The location where the device address must be specified also depends on the
host language that you are using. In some languages, this could be specified
outside the output command. In BASIC, this is always specified after the
keyword OUTPUT. The examples in this manual use a generic address of
XXX, When writing programs, the nuraber you use will depend on the cable
you use, in addition to the actual address. If you are using an HP-IB, see
chapter 2, "Programming over HP-IB." If you are using RS-232C, see

chapter 3, "Programming Over RS-232C." If you are using the HP 16500L
LAN option, see chapter 8 in the HP 16500L User’s Reference.

Instructions

Instructions (both commands and queries) normally appear as a string
embedded in a staterment of your host language, such as BASIC, Pascal or C.
The only time a parameter is not meant to be expressed as a string is when
the instruction’s syntax definition specifies <block_data=. There are just a
few instructions which use block data.

Instructions are composed of two main parts: the header, which specifies the
command or query to be sent; and the parameters, which provide additional
data needed to clarify the meaning of the instruction. Many queries do not
use arny parameters.

Instruction Header

The instruction header is one or more keywords separated by colons (:). The
command tree for the mainframe in figure 4-1 illustrates how all the
keywords can be joined together to form a complete header (see chapter 4,
“Programming and Documentation Conventions").

The example in figure 1-1 shows a command. Queries are indicated by
adding a question mark (?) to the end of the header. Many instructions can
be used as either commands or queries, depending on whether or not you
have included the question mark. The command and guery forms of an
instruction usually have different pararmeters.

-7

Introduction to Programming
Instruction Terminator

When you look up a query in this programmer’s reference, you'l find a
paragraph labeled "Returned Format” under the one labeled "Query." The
syntax definition by "Returned format” will always show the instruction
header in square brackets, like [: SYSTem:MENU], which means the text
between the brackets is optional. It is also a quick way to see what the
header looks like.

White Space

White space is used to separate the instruction header from the instruction
parameters. If the instruction does not use any parameters, white space
does not need to be included. White space is defined as one or more spaces.
ASCII defines a space to be a character, represented by a byte, that has a
decimal value of 32. Tabs can be used only if your controller first converts
them to space characters before sending the string to the system.

Instruction Parameters

Instruction parameters are used to clarify the meaning of the command or
query. They provide necessary data, such as: whether a function should be
on or off, which waveform is to be displayed, or which pattern is to be looked
for. Each Instruction’s syntax definition shows the parameters, as well as the
range of acceptable values they accept. This chapter’s "Parameter Data
Types" section has all of the general rules about acceptable values.

When there is more than one parameter, they are separated by commas (,).
White space surrounding the cormmas is optional,

Instruction Terminator

An instruction is executed after the instruction terminator is received. The
terminator is the NL (New Line) character. The NL character is an ASCII
linefeed character (decimal 10).

The NL (New Line) terminator has the same function as an EGS (End Of
String) and EOT (End Of Text) terminator.

Introduction to Programming
Header Types

Example

Example

Example

Header Types

There are three types of headers: Simple Command, Compound Command,
and Common Cormmand.

Simple Command Header

Simple command headers contain a single keyword. START and STOP are
examples of simple command headers typically used in this logic analyzer.
The syntax is: «function><terminators

When parameters (indicated by <data>) must be included with the simple
command header, the syntax is: < function»<white_space»<data>
<terminator:>

:RMODE SINCLE<terminator>

Compound Command Header

Compound command headers are a combination of two or more program
keywords. The first keyword selects the subsystem, and the last keyword
selects the function within that subsystem. Sometimes you may need to list
more than one subsystem before being allowed to specify the function. The
keywords within the compound header are separated by colons. For
example, to execute a single function within a subsystem, use the following:
i<subsystems>:<functicn><white_spaces<datar<terminators>

: SYSTEM: LONGFORM ON

To traverse down one level of a subsystem to execute a subsystem within

that subsystern, use the following:
<subsystem>:<gubsystem>:<functicn><white_space>

<datar<terminator:>

(MMEMORY : LOAD:CONFIG "FPILE "

1-9

Exampie

Introduction to Programming
Duplicate Keywords

Common Command Header

Common command headers control IEEE 488.2 functions within the logic
analyzer, such as, clear status. The syntax is:

*<command header=»<terminators
No white space or separator is allowed between the asterisk and the
command header. *CLS is an example of a common corumand header,

Combined Commands in the Same Subsystem

To execute more than one function within the same subsystem, a semicolon
(;) is used to separate the functions:
:<subsystem>:<function»><white space»<datar;<function>
<white spacer<datar<terminator>

: 8BYSTEM: LONGFCORM ON; HZADER ON

Duplicate Keywords

Identical function keywords can be used for more than one subsystem. For

example, the function keyword MMODE may be used to specify the marker

mode in the subsystem for state listing or the timing waveforms:

e :SLIST:MMODE PATTERN - sets the marker mode to patternin
the state listing.

® :TWAVEFORM:MMODE TIME - sets the marker mode to time in the
timing waveforms.

SLIST and TWAVEFORM are subsystem selectors, and they determine which

marker made is being modified.

Introduction to Programming
Query Usage

Exampie

Query Usage

Logic analysis systemn instructions that are immediately followed by a
question mark (?) are queries. After receiving a query, the logic analysis
system parser places the response in the output buffer. The output message
remains in the buffer until it is read or until another instruction is issued.
When read, the message is transmitted across the bus to the designated
listener (typically a controller).

Query comumands are used to find out how the system is currently
configured. They are also used to get results of measurements made by the
modules in the system.

This instruction piaces the current full-screen time for machine 1 of the logic
analyzer module, which is in slot 2, in the output buffer.

:SELECT 2:MACEINEL : TWAVEFORM: RANGE?

In order to prevent the loss of data in the output buffer, the output buffer
must be read before the next program message is sent. Sending another
command before reading the result of the query will cause the output buffer
to be cleared and the current response to be lost. This will also generate a
"QUERY UNTERMINATED" error in the error queue. For example, when you
send the query : SELECT 2:TWAVEFORM:RANGE? you must follow that
with an input statement. In BASIC, this is usually done with an ENTER
statement.

In BASIC, the input staternent, ENTER XXX; Range, passes the value
across the bus to the controller and places it in the variable Range.

Additional details on how to use queries is in the next section of this chapter,
"Receiving Information from the Logic Analysis Systern.”

Introduction to Programming
Program Header Options

Example

Program Header Options

Program headers can be sent using any combination of uppercase or
lowercase ASCII characters. System responses, however, are always
returned in uppercase.

Both program command and query headers may be sent in either long form
(complete spelling), short form (abbreviated spelling), or any combination of
long form and short form.

Programs written in long form are easily read and are almost self-
documenting. The short form syntax conserves the amount of controller
memory needed for program storage and reduces the amount of /O activity.

The rules for short form syntax are discussed ir: chapter 4, "Programming and
Documentation Conventions."

Either of the following examples turns on the headers and long form.
Long form:

QUTPUT XXX:":SYSTEM:HEADER ON;LONGFORM ON'
Short form:

QUTPUT XXX;":8YST:HEAD ON;LONG ON"

Introduction to Programming
Parameter Data Types

See Also

Example

Example

Parameter Data Types

There are three main types of data which are used in parameters. They are
numeric, string, and keyword. A fourth type, block data, is used only for a few
instructions: the DATA and SETup instructions in the SYSTem subsystem
(see chapter 10); the CATalog, UPLoad, and DOWN1oad instructions in the
MMEMory subsystem (see chapterll). These syntax rules also show how data
may be formatted when sent back from the system as a response.

The parameter list always follows the instruction header and is separated
from it by white space. When more than one parameter is used, they are
separated by commas. You are allowed to include one or more white spaces
arcund the commas, but it is not mandatory.

Numeric data

For numeric data, you have the option of using exponential notation or using
suffixes to indicate which unit is being used. However, exponential notation
is only applicable to the decimal number base. Do not combine an exponent
with a unit.

Tables b-1 and 5-2 in chapter 5, "Message Communications and System
Functions," list all available suffixes.

The following numbers are all equal:

28 = 0.28E2 = 28B0E-1 = 2B000m = 0.028K.

The system will recognize binary, octal, and hexadecimal base numbers. The
base of a number is specified with a prefix. The recognized prefixes are #B

for binary, #Q for octal, and #H for hexadecimal. The absence of a prefix
indicates the number is decimal which is the default base.

The following numbers are all equal:

#B11100 = #034 = #H1C - 28

Introduction to Programming
Parameter Data Types

You may not specify a base in conjunction with either exponents or unit
suffixes. Additionally, negative numbers must be expressed in decimal.

When a syntax definition specifies that a number is an integer, that means
that the nurnber should be whole. Any fractional part would be ignored,
truncating the nurmber. Numeric parameters that accept fractional values are
called real numbers.

All numbers are expected to be strings of ASCII characters. Thus, when
sending the number 9, you send a byte representing the ASCII code for the
character "9" (which is 57, or 0011 1001 in binary). A three-digit number,
like 102, will take up three bytes (ASCII codes 49, 48 and 50). This is taken
care of automatically when you inciude the entire instruction in a string.

String data

String data may be delimited with either single (") or double (") quotes.
String parameters representing labels are case-sensitive. For instance, the
labels "Bus A" and "bus a" are unique and can not be used interchangeably.
Also pay attention to the presence of spaces, because they act as legal
characters just like any other. So, the labels "In"and " In" are also two
different labels.

Keyword data

In many cases a parameter must be a keyword. The available keywords are
always included with the instruction’s syntax definition. When sending
commands, either the long form or short form (if one exists) may be used.
Uppercase and lowercase letters may be mixed freely. When receiving
responses, uppercase letters will be used exclusively. The use of long form
or short form in a response depends on the setting you last specified via the
SYSTem:LONGform command.

Db e e

[ntroduction to Programming
Selecting Multiple Subsystems

Selecting Multiple Subsystems

You can send multiple program commands and program queties for different
subsystems within the same selected module on the same line by separating
each command with a semicolonr. The colon following the semicolon enables
you to enter a new subsystem. <instruction headers><datas>;
:<instruction header»<datas<terminator:>

Multiple commands may be any combination of simple, compound and
comrmen comumands.

Example :§5LECT 2 :MACHINEL:ASSIGNZ; : SYSTEM:HEADERS ON

Example

Introduction to Programming
Selecting Multiple Subsystems

Receiving Information from the Logic Analysis
System

After receiving a query (legic analysis system instruction followed by
a question mark), the system interrogates the requested function and
places the answer in its output queue. The answer remains in the
output gueue until it is read, or, until another command is issued.
When read, the message is transmitted across the bus to the
designated listener (typically a controller). The input statement for
receiving a response message from system’s output queue usually has
two parameters: the device address and a format specification for
handling the response message.

All results for queries sent in a program message must be read before
another program message is sent. For example, when you send the
query : SYSTEM : LONGFORM?, you must follow that query with an
input statement. In BASIC, this is usually done with an ENTER
statement,

The format for handling the response messages is dependent on both
the controller and the programming language.

To read the result of the query cormmand : SYSTEM: LONGFORM? you
can execute this BASIC statement to enter the current setting for the
long form command in the numeric variable Setting.

ENTER XX¥; Setting

1-16

Introduction to Pragramming
Response Header Options

Examples

See Also

Response Header Options

The format of the returned ASCII string depends on the current settings of
the SYSTEM HEADER and LONGFORM commands. The general format is
<instruction_header><space»<datar<terminator>

The header identifies the data that follows (the parameters) and is controlled
by issuirg a : SYSTEM: HEADER ON/CFF command. If the state of the
header command is OFF, only the data is returned by the query.

The format of the header is controlled by the : SYSTEM: LONGFORM
command. If long form is OFF , the header will be in its short form and the
neader will vary in length, depending on the particular query. The separator
between the header and the data always consists of one space.

A command or query may be sent in either long form or short form, or in any
corbination of long form and short form. The HEADER and LONGFORM
commands only control the format of the returned data, and, they have no
affect on the way commands are sent.

The following examples show same passible responses for a
: SELECT 2:MACHINE]:SFORMAT : THRESHOLDZ? guery:

with HEADER OFF:
«<dataz<terminators
with HEADER ON and LONGFORM OFFT:

:SEL 2:MACH1:SFOR:THR?2 <white_spacer<datar<terminators>

with HEADER ON and LONGFORM ON:

:SELECT 2 :MACHINZ1:SFORMAT: THRESHOLDZ2 <white_ space>
<datar<terrinators>

Chapter 10, "SYSTem Subsystem" for information on turning the HEADER
and LONGFORM commands on and off.

introduction to Pregramming
Response Data Formats

Examples

See Also

Response Data Formats

Both numbers and strings are returned as a series of ASCI characters, as
described in the following sections. Keywords in the data are returned in the
same format as the header, as specified by the LONGf{orm command. Like
the headers, the keywords will atways be in uppercase.

The following are possible responses to the :SELECT 2:MACHINEL:
TFORMAT: LAR? "ADDR' query.

Header on; Longform cn

1 SELECT 2 :MACEINEL:TPORMAT:LABEL "ADDR ",19,
POSITIVE<terminator:>

Header on;Longform off
:SEL 2:MACH1:TFCR:LAB "ADDR ", 19,POS<terminators
Header off; Longform on

"ADDR ",19,POSITIVE<terminator:>

Header off; Longform off

"ADDR ", 19,POS<termirazor>

The individual commands in Part 2 of this guide contain information on the
format (alpha or humeric) of the data retuwrned from each query.

Introduction to Programming
String Variabies

Example

10 LET Machines =
!slot 3

String Variables

Because there are so many ways to code numbers, the HP 16500B Legic
Analysis System handles almost all data as ASCII strings. Depending on your
host language, vou may be able to use other types when reading in responses.
Sometimes it is helpful to use string variables in place of constants to send
instructions to the system, such as, including the headers with a query
response.

This example combines variables and constants in order to make it easier to
switch from MACHINE1 to MACHINEZ in slot 3. In BASIC, the & operator is
used for string concatenation.

"LSELECT 3:MACHINEZ2" !Send all Instructions to machine 2 in

20 OUTPUT XXX; Machine$ & ":TYPE STATE" !Make machine a state anaiyzer
30 ! Assign all Zabels to be positive

40 OJTPUT XX¥; Machine$ & ":SFORMAT:LABEL ‘CHAN 1', POS"

50 OUTPUT XXX; Machine$ & ":SFORMAT:LABEL ‘'CHAN 2', POS"

60 QUTPUT XXX; Machine$S & ":SI'ORMAT:LABEL 'OUT’, PO&™

99 END

Example

If you want to observe the headers for queries, you must bring the returned
data into a string variable. Reading queries into string variables requires little
attention to formatting.

This command line places the output of the query in the string variable
Result$.

ENTER XXX;Results

In the language used for this guide (HP BASIC 6.2), string variables are case-
sensitive and must be expressed exactiy the same each time they are used.
The output of the system may be numeric or character data depending on
what is queried. Refer to the specific commands, in Part 2 of this guide, for
the formats and types of data returhed from queries.

1-19

Cwppeee o

Example

Intreduction to Programming
Numeric Base

The following example shows logic analyzer module data being returned to a
string variable with headers off:

10 QUTPUT X¥X¥;":SYSTEM:HEADER QFF*®

20 DIM Rangs([30]

30 QUTPUT XXX;':SIZLECT 2:MACHTNEL:TWAVEFORM:RANGE?"

40 ENTER XXX;ERangs

5¢ PRINT Rang$

60 END

After running this program, the controlier displays: +1.00000E-05

Numeric Base

Most numeric data will be returned in the same base as shown on screer.
When the prefix #B precedes the returned data, the value is in the binary
base. Likewise, #Q is the octal base and #H is the hexadecimal base. If no
prefix precedes the returned numeric data, then the value is in the decirnal
base.

Numeric Variables

If your host language can convert from ASCII to a numeric format, then you
can use numeric variables. Turning off the response headers will help you
avoid accidently trying to convert the header into a number.

1-20

Example

introduction to Programming
Definite-Length Block Response Data

The following example shows logic analyzer module data being returned to a
numeric variable.

10 OUTRPUT XXX;":5YSTEM:EEADER OFF"

20 OUTPUT XXX;":SELECT 2:MACHINIL:TWAVEFORM:RANGE?"

30 =ZNTER XXX; Rang

4(¢ PRINT Rang

50 END

This time the format of the number (whether or not exponential notation is
used) is dependant upon your host language. In BASIC, the output will look
like: 1.E-5

Definite-Length Block Response Data

Definite-length block response data, also refered to as block data, allows any
type of device-dependent data to be transmitted over the system interface as
a series of data bytes. Definite-length block data is particularly useful for
sending large quantities of data, or, for sending 8-bit extended ASCII codes.
The syntax is a pound sign { #) followed by a non-zero digit representing the
number of digits in the decimal integer. Following the non zero digit is the
decimal integer that states the number of 8-bit data bytes to follow. This
number is followed by the actual data.

Indefinite-length block data is not supported on the HP16500B Logic Analysis
System.

1-21

Introduction to Programming
Multiple Queries

For example, for transmitting 80 bytes of data, the syntax would be:

Figure 1-2
NUMHER OF DIGITS
THAT FOLLOW
ACTUAL DATA
et s
#800200@BO<eighty bytes of daoto><terminator>
R s
NUMBER OF BYTES
TO BE TRANSMITTED 16506/8L22
Definite-length Block Response Data
The "8" states the number of digits that follow, and "00000080" states the
nurtber of bytes to be transmitted, which is 80.
Multiple Queries
You can send multiple queries to the systemn within a single program
message, but you must also read them back within a single program message.
This can be accomplished by either reading them back into a string variable
or into multiple numeric variables,
Example You can read the result of the query :SYSTEM:HEADER?,LONGFOEM? into

the string variable Results$ with the command:

ENTER XXX; Resultss

When you read the result of multiple queries into string variables, each
response is separated by a semicolon.

1-22

Example

Example

Introduction to Pragramming
System Status

The response of the query :SYSTEM:HEADER?:LONGFORM? with HEADER
and LONGFORM turned on is:

1 SYSTEM:HEADZR 1; :SYSTEM:ILONGFORM 1

If you do not need to see the headers when the numeric values are returned,
then you could use numeric variables. When you are receiving numeric data
into numeric variables, the headers should be turned off. Otherwise the
headers may canse misinterpretation of returred data.

The following program message is used to read the query
:SYSTEM:HEADERS?; LONGFORM? into multipte numeric variables:

ENTER X¥XX; Resultl, Result?2

See Also

System Status

Status registers track the current status of the mainframe and the installed
modules. By checking the system status, you can find out whether an
operation has been completed, whether a module is receiving triggers, and
more.

Chapter 6, "Status Reporting," explains how to check the status of the system
and the installed modules.

1-23

1-24

Programming Over HP-IB

2-1

Introduction

This section describes the interface functions and some general
concepts of the HP-IB. In general, these functions are defined by
IEEE 488.1 (HP-IB bus standard). They deal with general bus
management issues, as well as messages which can be sent over the
bus as bus commands.

2-2

Programming Over HP-IB
Interface Capabhilities

Interface Capabilities

The interface capabilities of the HP 16500B, as defined by IEEE 488.1 are
SH1, AH1, T5, TEO, L3, LEO, SR1, RL1, PPO, DC1, DT1, €0, and E2.

Command and Data Concepts

The HP-IB has two modes of operation: command mode and data mode. The
bus is in command mode when the ATN line is true. The command mode is
used to send talk and listen addresses and various bus commands, such as a
group execute trigger (GET). The bus is in the data mode when the ATN line
is false. The data mode is used to convey device-dependent messages across
the bus. These device-dependent messages include all of the commands and
responses found in chapters 9 through 12 of this guide for the mainframe and
the respective Programmer’s Guides for each module installed in the
mainframe.

See Also

Talk/Listen Addressing

By using the touchscreen fields in the System Configuration menu, the HP-IB
interface can be placed in either talk only mode, "Printer connected to
HP-IB," or in addressed talk/listen mode, "Controller connected to HP-IB."

Chapter 4, "The HP-IB and RS-232C Interfaces” in the HP 165008 User’s
Reference)

2-3

Programming Over HP-IB
HP-IB Bus Addressing

Talk only mode must be used when you want the system to talk directly to a
printer without the aid of a controller. Addressed talk/lister mode is used
when the system will operate in conjunction with a controller. When the
systern is in the addressed talk/listen mode, the following is true:

e Each device on the HP-IB resides at a particular address ranging from 0 to
30.

® The active controller specifies which devices will talk and which will listen.

e An instrument, therefore, may be talk-addressed, listen-addressed, or
uniaddressed by the controller.

I the controller addresses the instrument to talk, it will remain configured to
talk until it receives:

e an interface clear message (IFC)
e another instrument’s talk address (OTA)
e its own listen address (MLA)

e & universal untalk (UNT) command.
If the controller addresses the instrument to listen, it will remain configured
to listen until it receives:

e an interface clear message (IFFC)
e its own talk address (MTA)

e 2 universal unlisten (UNL) command.

HP-1B Bus Addressing

Because HP-IB can address multiple devices through the same interface card,
the device address passed with the program message must include not only
the correct instrument address, but also the correct interface code.

Interface Select Code (Selects the Interface)

Each interface card has its own interface select code. This code is used by
the controller to direct commands and communications to the proper
interface. The default is always "7" for HP-IB controllers.

Example

Programming Over HP-IB
Local, Remote, and Local Lockout

Instrument Address (Selects the Instrument)

Each instrument on the HP-IB port must have a unique instrument address
between decimals 0 and 30. The device address passed with the program
message must include not only the correct instrument address, but also the
correct interface select code.

For example, if the instrument address is 4 and the interface select code is 7,
the instruction will cause an action in the instrument at device address 704.
DEVICE ADDRESS = (Interface Select Code} X 100 + (Instrument
Address)

Hint

Local, Remote, and Local Lockout

The local, remote, and remote with local lockout modes may be used for
various degrees of front-panel control while a program is running. The logic
analysis system will accept and execute bus commands while in local mode,
and the front panel will also be entirely active. If the HP 16500B is in remote
mode, the system will go from remote to local with any touchsecreen, mouse,
or keyboard activity. In remote with local lockout mode, all controls (except
the power switch) are entirely locked out. Local control can only be restored
by the controller.

Cycling the power will also restore local control, but this will also reset
certain HP-IB states. It also resets the system to the power-on defaults and
purges any acquired data in the acquisition memory of all the installed
modules.

The instrument is placed In remote mode by setting the REN (Remote
Enable) bus control line true, and then addressing the instrument to listen.
The instrument can be placed in local lockout mode by sending the local
lockout (LLO) command. The instrurnent can be returned to local mode by

2-5

See Also

Programming Over HP-iB
Bus Commands

either setting the REN line false, or sending the instrument the go to local
{GTL) command.

:8YSTenm:LOCKout in chapter 9, "Mainframe Commands"

Bus Commands

The following commands are IEEE 488.1 bus commands (ATN true). IEEE
488 .2 defines many of the actions which are taken when these commands are
received by the systerm.

Device Clear

The device clear (DCL) or selected device clear (SDC) commands clear the
input and output buffers, reset the parser, clear any pending commands, and
clear the Request-OPC flag.

Group Execute Trigger (GET)

The group execute trigger command will cause the same action as the
START comrnand for Group Run: the instrument will acquire data for the
active waveform and listing displays.

Interface Clear (IFC)

This command halts all bus activity. This includes unaddressing all listeners
and the talker, disabling serial poll on all devices, and returning control to the
system controller,

2-6

Programming Over RS-232C

3-1

Introduction

This chapter describes the interface functions and some general
concepts of the RS-232C. The RS-232C interface on this instrument
is Hewlett-Packard’s implementation of EIA Recommended Standard
RS-232C, "Interfuce Between Data Terminal Equipment and Data
Commurications Equipment Employing Serial Binary Data
Interchange." With this interface, data is sent one bit at a time, and
characters are not synchronized with preceding or subseqguent data
characters. Each character is sent as a comnplete entity without
relationship to other events.

Programming Over RS-232C
Interface Operation

Interface Operation

The HP 16500B Logic Analysis System can be programmed with a controller
over RS-232C using either a minimum three-wire or extended hardwire
interface. The operation and exact connections for these interfaces are
described in more detail in the following sections. When you are
programming an HP 165008 Logic Analysis System over RS-232C with a
controller, you are normally operating directly between two DTE (Data
Terminal Equiprnent) devices as compared to operating between a DTE
device and a DCE (Data Communications Equipment) device.

When operating directly between two DTE devices, certain considerations
must be taken into account. For a three-wire operation, XON/XOFF must be
used to handle protocol between the devices. For extended hardwire
operation, protocol may be handled either with XON/XOFF or by
manipulating the CTS and RTS lines of the RS-232C link. For both three- wire
and extended hardwire operation, the DCD and DSR inputs to the logic
analysis system must remain high for proper operation.

With extended hardwire operation, a high on the CTS input allows the logic
analysis system to send data, and a low disables the logic analysis system
data transmission. Likewise, a high on the RTS line allows the controller to
send data, and a low signals a request for the controller to disable data
transmissicn. Because three-wire operation has no control over the CTS
input, internal pull-up resistors in the logic analysis system assure that this
line remains high for proper three-wire operation.

RS-232C Cables

Selecting a cable for the RS-232C interface depends on your specific
application, and, whether you wish to use software or hardware handshake
protocol. The following paragraphs describe which lines of the HP 165008
Logic Analysis system are used to control the handshake operation of the
RS-232C relative to the system. To locate the proper cable for your
application, refer to the reference manual for your computer or controller.
Your computer or controller manual should describe the exact handshake

3-3

Pragramming Over RS-232C
Minimum Three-Wire Interface with Software Protocol

protocol your controller can use to operate over the RS-232C bus. Alsoin
this chapter you will find HP cabie recommendations for hardware handshake.

Minimum Three-Wire Interface with Software Protocol

With a three-wire interface, the software (as compared to interface
hardware) controls the data flow between the logic analysis system and the
controller. The three-wire interface provides no hardware means 1o control
data flow between the controller and the logic analysis system. Therefore,
XON/OFF protocol is the only means to control this data flow. The
three-wire interface provides a much simpler connection between devices
sirice you can ignore hardware handshake requirements.

The communications software you are using in your computer/controller must
he capable of using XON/XOFF exclusively in order to use three-wire interface
cables. For example, some communications software packages can use

XON/XOFF but are also dependent on the CTS, and DSR lines being true to
communicate.

The logic analysis system uses the following connections on its RS-232C
interface for three-wire communication:

e Pin 7 SGND (Signal Ground)
e Pin2 TD (Transmit Data from logic analysis system)

e Pin3 RD (Receive Data into logic analysis system)

The TD (Transmit Data) line from the logic analysis system must connect to
the RD (Receive Data) line on the controller. Likewise, the RD line from the
logic analysis system must connect to the TD line on the controller, Internal
pull-up resistors in the logic analysis system assure the DCD, DSR, and CTS

lines remain high when you are using a three-wire interface.

3-4

Pregramming Over RS-232C
Extended Interface with Hardware Handshake

Extended Interface with Hardware Handshake

With the extended interface, both the software and the hardware can control
the data flow between the logic analysis system and the controller. This
allows you to have more control of data flow between devices. The logic
analysis system uses the following connections on its RS-232C interface for
extended interface communication:

e Pin 7 SGND (Signal Ground)
e Pin2 TD (Transmit Data from logic analysis system)

¢ Pin3d RD (Receive Data into logic analysis system}

The additionai lines you use depends on your controller’s implementation of
the extended hardwire interface.

¢ Pin4 RTS (Request To Serxd) is an output from the logic analysis system
which can be used to control incoming data flow,

e Pin5 CTS (Clear To Send) is an input to the logic analysis system which
controls data flow from the logic analysis system.

e Pin6 DSR (Data Set Ready) is an input to the logic analysis system
which controis data flow from the logic analysis system within two bytes.

e Pin8 DCD (Data Carrier Detect) is an input to the logic analysis system
which controls data flow from the logic analysis system within two bytes.

e Pin 20 DTR (Data Terminal Ready) is an output from the logic analysis
system which is enabled as long as the logic analysis system is turned on,

The TD (Transmit Data) line from the logic analysis systerm must connect to
the R (Receive Data) line on the controller. Likewise, the RD line from the
logic analysis system must connect to the TD line on the controller.

The RTS (Request To Send), is an cutput from the logic analysis system
which can be used to control incoming data flow. A true on the RTS line
allows the controller to send data and a false signals a request for the
controller to disable data transmission.

The CTS (Clear To Send), DSR (Data Set Ready), and DCD (Data Carrier
Detect) lines are inputs to the iogic analysis system, which control data flow
from the logic analysis system. Internal pull-up resistors in the logic analysis
system assure the DCD and DSR lines remain high when they are not
connected. If DCD or DSR are connected to the contreller, the controller
must keep these lines along with the CTS line high to enable the logic
analysis system to send data to the controller. A low on any one of these

Programming Over RS-232C
Cable Examples

lines will disable the logic analysis system data transmission. Puliing the CTS
line low during data transmission will stop logic analysis system data
transmission immediately. Pulling either the DSR or DCD line low during
data transmission will stop logic analysis system data transmission, but as
marly as two additional bytes may be transmitted from the logic analysis

system.

Figure 3-1

Cable Examples

HP 9000 Series 300

Figure 3-1 is an example of how to connect the HP 165008 Logic Analysis
System to the HP 98628A Interface card of an HP 9000 series 300 controller.
For more information on cabling, refer to the reference manual for your
specific controller.

Because this example does not have the correct connections for hardware
handshake, you must use the XON/XOFF protocol when connecting the logic
analysis system.

B 98aZg

i ‘ 7 NIZREALD TARU
=] S ——
|

1ZZ2LZN 206°-427°6
MALT TO-MA_- D02 29T 302
(SEWAT.TC-SEMAD)
[EPLNLERS

Cable Example

3-6

Figure 3-2

Programming Over RS-232C
Cable Examples

HP Vectra Personal Computers and Compatibles

Figures 3-2 through 3-4 give examples of three cables that will work for the
extended interface with hardware handshake. Keep in mind that these
cables should work if your computer’s serial interface supports the four
cormmon RS-232C handshake signals as defined by the RS-232C standard.
The four common handshake signals are Data Carrier Detect (DCD), Data
Terminal Ready (DTR), Clear to Send (CTS), and Ready to Send (RTS).
Figure 3-2 shows the schematic of a 25-pin female to 25-pin male cable. The
following HP cables support this configuration:

e HP 172550, DB-25(F) to DB-25(M), 1.2 meter

e HP 17255F, DB-25(F) to DB-25(M), 1.2 meter, shielded.

In addition to the female-to-male cables with this configuration, a
male-to-male cable 1.2 meters in length is also available:

e HP 17255M, DB-25(M) to DB-25(M), 1.2 meter

25 27 - 25 a7 M
- -
2 -3
3 - z
5 l—- @ - co
5 -
7 - | ol
28 s —— P 4
= 5

S4EU0MZS

25-pin {F} to 25-pin (M) Cable

3-7

Figure 3-3

Programming Over RS-232C
Cable Examples

Figure 3-3 shows the schematic of a 25-pin male to 25-pin male cable 5
meters in length. The following HFP cable supports this configuration:

e HP 13242G, DB-25(M) to DB-25(M), b meter

Mo
o
&
.
<

y

A!+,Ag

™
]

o o~ O v o)

N s

D — N

i

vy

25-pin (M) to 25-pin (M) Cable

Figure 3-4 shows the schematic of a 9-pin female to 25-pin male cable. The
following HP cables support this configuration:

o HP 24542G, DB 9(F) to DB-25(M), 3 meter
e HP 24542H, DB-9(F) to DB-25(M), 3 meter, shielded
e HP 45911-60009, DB-9(F) to DB-25(M), 1.5 meter

Figure 3-4

Pregramming Over RS-232C
Configuring the Logic Analysis System Interface

Y-z 9 20077 M

-y s o= 4

N - - z

i — - - oG

4 — - -

—

hH el 7

£ - —- %
 —g——

;= ol

5£B00MZ5

9-pin {F) to 25-pin (M} Cable

Configuring the Logic Analysis System Interface

The R5-232C menu field in the System Configuration Menu allows you access
to the RS-232C Configuration menu where the RS-232C interface is
configured. If you are not familiar with how to configure the RS-232C
interface, refer to chapter 4, "The HP-IB and RS232-C Interfaces" in the

HP 165008 Logic Analysis System User’s Reference.

Programming Qver RS-232C
Interface Capabilities

Interface Capabilities

The baud rate, stop bits, parity, protocol, and data bits must be configured
exactly the same for both the controller and the logic analysis system to
properly communicate over the RS-232C bus. The RS-232C interface
capabilities of the HP 165008 Logic Analysis System are listed below:

e Baud Rate: 110, 300, 600, 1200, 2400, 4800, 9600, or 19.2k
e Stop Bits: 1, 1.5, 0r 2

Parity: None, Odd, or Even

e Protocol: None or XON/XOFF
e Data Bits: 8
Protocol

NONE With a three-wire interface, selecting NONE for the protocol
does not allow the sending or receiving device to control data flow. No
control over the data flow increases the possibility of missing data or
transferring incomplete data.

With an extended hardwire interface, selecting NONE allows a hardware
handshake to occur. With hardware handshake, the hardware signals control
data flow.

XON/XOFF XON/XOFF stands for Transmit On/Transmit Off. With this
mode, the receiver (controller or logic analysis system) controls

data flow, and, can request that the sender (logic analysis system or
controller) stop data flow. By sending XOFF (ASCII 19) over its transmit
data line, the receiver requests that the sender disables data
transmission. A subsequent XON (ASCII 17) allows the sending device
to resume data transmission.

Data Bits

Data bits are the number of bits sent and received per character that
represent the binary code of that character. Characters consist of either 7 or
8 bits, depending on the application. The HP 165008 Logic Analysis

System supports 8 bit only.

8 Bit Mode Information is usually stored in bytes (8 bits at a time).
With 8-bit mode, you can send and receive data just as it is stored,
without the need to convert the data.

See Also

Programming Over RS-232C
RS-232C Bus Addressing

The controller and the HP 16500B Logic Analysis System must be in the
same bit mode to properly communicate over the RS-232C. This means that
the controller must have the capability to send and receive 8 bit data.

For more information on the RS-232C interface, refer to the [P 165008
Logic Analysis System User’s Reference. For information on RS-232C
voltage levels and connector pinouts, refer to the HP 16500B Logic Analysis
System Service Guide.

RS-232C Bus Addressing

The RS-232C address you must use is dependent on the computer or
controller you are using to communicate with the logic analysis system,

HP Vectra Personal Computers or compatibles

If you are using an HFP Vectra Personal Computer or compatible, it must have
an unused serial port to which you connect the logic analysis system’s
RS-232C port. The proper address for the serial port is dependent on the
hardware configuration of your computer. Additionally, your
communications software rmust be configured to address the proper serial
pert. Refer to your computer and communications software manuals for
more information on setting up your serial port address.

HP 9000 Series 300 Controllers

Each RS-232C interface card for the HP 9000 Series 300 Controller has its
own interface select code. This code is used by the controller for directing
commands and communications to the proper interface by specifying the
correct interface code for the device address.

Generally, the interface select code can be any decimal value between 0 and
31, except for those interface codes which are reserved by the controller for
nternal peripherals and other internal interfaces. This value can be selected
through switches on the interface card. For example, if your RS-232C
interface select code is 9, the device address required to communicate over
the RS-232C bus is 9. For more information, refer to the reference manual
for your interface card or controller.

3-11

Programming Over RS-232C
Lockout Command

Hint

See Also

Lockout Command

To lockout the front-panel controls, use the SYSTem command LOCKout.
Wher this function is on, all controls (except the power switch) are entirely
locked out. Local control can only be restored by sending the : LOCKout
OFF comrmand.

Cycling the power will also restore local control, but this will also reset
certain RS-232C states. It also resets the logic analysis system to the
power-on defaults and purges any acquired data in the acquisition memory of
all the installed modules.

For more information on this command see chapter 10, "System Commands.”

3-12

Programming and
Documentation Conventions

4-1

Introduction

This chapter covers the programming conventions used in
programming the instrument, as well as the decumentation
conventions used in this manual. This chapter also contains a detailed
description of the command tree and command tree traversal.

Programming and Documentation Conventions
Truncation Rule

Tabie 4-1

Truncation Rule

The truncation rule for the keywords used in headers and parameters is:

e If the long form has four or fewer characters, there is no change in the
short form. When the long form has more than four characters the short
form is just the first four characters, uniess the fourth character is a
vowel. In that case only the first three characters are used.

There are some commands that do not conform to the truncation rule by design.

These will be noted in their respective description pages.

Some examples of how the truncation rule is applied to various cormmands
are shown in table 4-1.

Truncation Examples

Long Form Short Form
OFF OFF

DATA DATA
START STAR
LONGFORM LONG
DELAY DEL
ACCUMULATE ACC

4-3

Programming and Documentation Conventions
Infinity Representation

Infinity Representation

The representation of infinity is 9.9E+37 for real numbers and 32767 for
integers. This is also the value returned when a measurement cannot be
made.

Sequential and Overlapped Commands

IEEE 488 .2 makes the distinction between sequential and overlapped
cormmands. Sequential commands finish their task before the executicn of
the next command starts. Overlapped commands run concurrently; therefore,
the command following an overlapped command may be started before the
overiapped command is completed. The overlapped commands for the HP
16500B Logic Analysis System are STARt and STOP.

Response Generation

IEEE 488.2 defines two times at which query responses may be buffered.
The first is when the query is parsed by the instrument and the second is
when the controller addresses the instrument to talk so that it may read the
response. The HP 16500B Logic Analysis System will buffer responses toa
query when it is parsed.

Programming and Documentation Conventions
Syntax Diagrams

Syntax Diagrams

At the beginning of each chapter in Part 2, "Commands," is a syntax diagram
showing the proper syntax for each command. All characters contained in a
circle or oblong are literals, and must be entered exactly as shown. Words
and phrases contained in rectangles are names of items used with the
command and are described in the accompanying text of each cornmand.
Each line can only be entered from one direction as indicated by the arrow
on the entry line. Any cornbination of commands and arguments that can be
generated by following the lines in the proper direction is syntactically
correct. An argument is optional if there is a path around it. When there is a
rectangle which contains the word "space,” a white space character must be
entered. White space is optional in many other places.

{1

XXX

Notation Conventions and Definitions

The following conventions are used in this manual when describing
programming rules and example.

Angular brackets enclose words or characters that are used to symbolize a
program code parameter or a bus command

"is defined as." For example, A = B indicates that A can be replaced by B in
any statement containing A,

"or."” Indicates a choice of one element fror a list. For example, A | B
indicates A or B, but not botkh.

An ellipsis (trailing dots) is used to indicate that the preceding element may
be repeated one or more times.

Square brackets indicate that the enclosed items are optional.
When several items are enclosed by braces and separated by vertical bars),
one, and only one of these elements must be selected.

Three Xs after an ENTER or OUTPUT statement represent the device
address required by your controller.

4-5

<NL>

Programming and Documentation Conventions
The Command Tree

Linefeed (ASCII decimal 10).

The Command Tree

The command tree (figure 4-1) shows all commands in the HP 16500B Logic
Analysis System and the relationship of the commands to each other. You
should notice that the common commands are not actually connected to the
other commands in the command tree. After a <NL> (linefeed - ASCII
decimal 10) has been sent to the instrument, the parser will be set to the root
of the command tree. Parameters are not shown in this figure. The comrmand
tree allows you to see what the system’s parser expects to receive. All legal
headers can be created by traversing down the tree, adding keywords until
the end of a branch has been reached.

Command Types

As shown in chapter 1, "Header Types," there are three types of headers.
Each header has a corresponding command type. This section shows how
they relate to the cornmand tree.

System Commands The systern commands reside at the top level of
the command tree. These commands are always parsable if they occur at
the beginning of a program message, or are preceded by a colon. START
and STOP are exampies of system commands.

Subsystem Commands Subsystermn cormmands are grouped together
under a common node of the tree, such as the MMEMORY commands.

Common Commands Common commands are independent of the free,
and do not affect the position of the parser within the tree. *C1.8 and
*RST are examples of common commands.

Figure 4-1

Ly

¢ Zonmands

xS
*1 5
x5
x N
kST

D k020

L w0aT

HP 16500B Command Tree

DR
*25
* SR
*3T3
® 10
* 15T
win A

Programming and Documentation Conventions

The Command Tree

Steets T

AJTo.0zd

MMZMory Nizoeooe

TATu0g
s

-aey
J2JwN.oad
NTm. z2
SGADLONY] SKEW=N>
_0AD ASSemp.er TRZZ
MO TT vz

=

242<

N NE]

S0

<Nz

STIRe J0NAg)

= oad

VDo ame

165003318

4-7

Programming and Documentation Conventions
Tree Traversal Rules

Example 1

Tree Traversal Rules

Command headers are created by traversing down the command tree. A
legal command header from the command tree in figure 4-1 would be

:MMEMORY : INTTTALIZE. This is refered to as a compound header. As
shown on the tree, branches are always preceded by colons. Do not add

spaces around the colons. The following two rules apply to traversing the tree:

e A leading colon (the first character of a header) or a terminator places the
parser at the root of the command tree. For example, the colon preceding
MMEMORY (: MMEMORY) in the above exarnple places the parser at the root
of the command tree.

s Executing a subsystem command places you in that subsystem until a
leading colon or a terminator is found. The parser will stay at the colon
above the keyword where the last header terminated. Any cormmand
below that point can be sent within the current program message without
sending the keywords(s) which appear above them. For example, the
colon separating MMEMORY and INITIALIZE is the location of the
parser when this compund header is parsed.

The following examples are written using HP? BASIC 6.2 on a HP 9000 Series
300 Controller. The quoted string is placed on the bus, followed by a carriage
return and linefeed (CRLF). The three Xs (XXX) shown in this manual after
an ENTER or OUTPUT staterment represents the device address required by
yvour controller.

In this example, the colon between SYSTEM and HEADER is necessary since
SYSTEM: HEADER is a compound cormmand. The semicolon between the
HEADER command and the LONGFORM command is the required <program
message unit separators> .The LONGFORM command does not need
SYSTEM preceding it, since the SYSTEM: HEADER command sets the parser
to the SYSTEM node in the tree.

OQUTPUT XXX;":SYSTEM:HEADER ON; LONGZORM ON"

4-8

Example 2

Example 3

Programming and Documentation Conventions
Command Set Organization

In the first line of this example, the subsystem selector is implied for the
STORE command in the compound command. The STORE command must
be in the same program message as the INITIALIZE command, since the
<program message terminators> will place the parser back at the root
of the command tree.

A second way to send these commands is by placing MMEMORY : before the
STORE command as shown in the fourth line of this example 2.

OUTPUT XXX; " :MMEMORY:INITIALIZE;STORE 'FILE ', 'FIL=
DESCRIPTION'"
ar

QUTPUT XXX; ™" :MMEMORY: NITIALIZE"
QUTPUT XXX;" :MMEMCRY:STORE ‘FILE ', 'FILE DZSCRIPTION’"

In this example, the leading colon before SYSTEM tells the parser to go back
to the root of the command tree. The parser can then see the
SYSTEM: PRINT command.

OUTEUT ¥XX;":MMEM:CATALOG?; : SYSTIM: PRINT ALL"

Command Set Organization

The command set for the HP 165008 Logic Analysis System mainframe is
divided into 5 separate groups as shown in figure 4-1. The command groups
are: cormmon commands, mainframe commands, and 3 sets of subsystem
commands. [n addition to the cormumand tree in figure 4-1, a command to
subsystem cross-reference is shown in table 4-2.

Each of the 5 groups of commands is described in a seperate chapter in Part
2 "Commands." Each of the chapters contain a brief description of the
subsystem, a set of syntax diagrams for those commands, and finally, the
commands for that subsystem in alphabetical order.

4-9

Programming and Documentation Canventions
Subsystems

The commands are shown in the long form and short form using upper and
lowercase letters. As an example, AUToload indicates that the long form of
the command is AUTOLOAD and the short form of the command is AUT.
Fach of the commands contain a description of the command, its arguments,
and the command syntax.

Subsystems

There are three subsystems in the mainframe. In the command tree (figure
4-1) they are shown as branches, with the node above showing the name of
the subsystem, Only one subsystem may be selected at a time. At power on,
the cormrmand parser is set 1o the root of the cormmand tree; therefore, no
subsystem is selected. The three subsystems in the HP 165008 Logic
Analysis System are:

e SYSTem - contrels some BASIC functions of the instrument.
e MMEMory - provides access to the internal disk drive.

e [NTermodule - provides access to the Intermodule bus (IMB).

Pragramming and Documentation Conventions
Subsystems

Table 4-2

Alphabetic Command Cross-Reference

Command Subsystem Command Subsystern
*CLS Common INSert INTermodule
*ESE Common LER Mainframe
*ESR Common LOAD MMEMory
*IDN Common LOCKout Mainframe
*{ST Common LONGform SYSTem
*OPC Comman MENU Mainframe
*OPT Common MESE Mainframe
*PRE Common MESR Mainframe
*RST Common MKDir MMEMory
*SRE Common MSI MMEMory
*STB Commaon PACK MMEMory
*TRG Common PORTEDGE INTermodule
*TST Common PORTLEV INTermodule
*WAI Common PRINt SYSTem
AUToload MMEMory PURGe MMEMory
BEEPer Mainframe PWD MMEMory
CAPability Mainframe REName MMEMory
CARDcage Mainframe RMODe Mainframe
CATalog MMEMory RTC Mainframe
cD MMEMory SELect Mainframe
CESE Mainframe SETColor Mainframe
CESR Mainframe SKEW INTermodule
COPY MMEMoaory STARt Mainframe
DATA SYSTem sSTGP Mainframe
DELete INTermodule STORe MMEMory
DOWNload MMEMory STup SYSTem

DSP SYSTem TREE INTermodule
EOi Mainframe TTIMe INTermodule
ERRor SYSTem UPLoad MMEMory
HEADer SYSTem VOLume MMEMory
HTIMe INTermodule

INITialize MMEMory

INPort INTermodule

4-11

St e

Programming and Documentation Conventions
Program Examples

Example

Program Examples

The program examples in chapter 13, "Programming Examples," were written
on an HP 9000 Series 300 controller using the HP BASIC 6.2 language. The
programs always assume a generic address for the HP 16500B Logic Analysis

System of XXX,

In the examples, vou should pay special atterttion to the ways in which the
cormmand and/or query can be sent. Keywords can be sent using either the
long form or short form (if one exists for that word). With the exception of
some string parameters, the parser is not case-sensitive. Uppercase and
lowercase letters may be mixed freely. System commands like HEADer and
LONGform allow you to dictate what forms the responses take, but they have
no affect on how you must structure your commands and queries.

The following commands ali set the logic analyzer’s Tirming Waveform Delay
to 100 ms,

Keywords in long form, numbers using the decimal format.

OUTPUT XX¥X;*:SELECT 2:MACHINE]:TWAVEFORM:DILAY .1"
Keywords in short form, numbers using an exponential format.

QUTPUT XXX;":S5EL 2:MACH1:TWAV:DEL 1=-1°

Keywords in short form using lowercase letters, numbers using a suffix.

OUTPUT XXX;":zel 2:machl:twav:del ~00ms"

In these examples, the colon shown as the first character of the command is
optional on the HP 165008 Logic Analysis System. The space between DELay
and the argument is required.

Message Communication and
System Functions

5-1

Introduction

This chapter describes the operation of instruments that operate in
compliance with the IEEE 488.2 (syntax) standard. It is intended to
give you enough basic information about the IEEE 488.2 Standard to
successfully program the logic analysis system. You can find
additional detailed information about the IEEE 488.2 Standard in
ANSIIEEE Std 488.2-1987, TEEE Standard Codes, Formats,
Protocols, and Common Commands."

The HP 165008 Logic Analysis Syster is designed to be compatible
with cther Hewlett-Packard IEEE 488.2 compatible instruments.
Instruments that are compatible with IEEE 488.2 must also be
compatible with IEEE 488.1 (HP-IB bus standard); however, IEEE
488.1 compatible instruments may or may not conform to the IEEE
488.2 standard. The IEEE 488.2 standard defines the message
exchange protocols by which the instrument and the controller will
communicate. It also defines some common capabilities, which are
found in all IEEE 488.2 mstruments. This chapter also contains a few
items which are not specifically defined by IEEE 488.2, but deal with
message comrnunication or system functions.

The syntax and protocol for RS-232C program messages and response
messages for the HP 16500B Logic Analysis System are structured
very similar to those described by IEEE 488.2. In most cases, the
same structure shown in this chapter for IEEE 488.2 will also work for
RS-232C. Because of this, no additional information has been
included for RS-232C.

5-2

Message Communication and System Functions
Protocols

Protocols

The protocols of IEEE 488.2 define the overall scheme used by the controiler
and the instrument to communicate. This includes defining when it is
appropriate for devices to talk or listen, and what happens when the protocol
is not followed.

Functional Elements

Before proceeding with the description of the protocoal, a few system
components should be understood.

Input Buffer The input buffer of the instrument is the memory area
where commands and queries are stored prior to being parsed and
executed. It allows a controller to send a string of commands to the
instrument which could take some time to execute, and then proceed to
talk to another instrument while the first instrument is parsing and
executing commands.

Output Queue The output queue of the instrument is the memory area
where all output data are stored until read by the controlier,

Parser The instrument’s parser is the component that interprets the
commands sent to the instrument and decides what actions should be
taken. "Parsing” refers to the action taken by the parser to achieve this
goal. Parsing and executing of commands begins when either the
instrument recognizes a program message terminator (defined later in
this chapter) or the input buffer becomes full. If you wish to send a long
sequence of cormmands to be executed and then talk to another
instrument while they are executing, you should send all the commands
before sending the program message terminator.

5-3

Message Communication and System Functions
Protocols

Protocol Overview

The instrument and controller communicate using program messages and
response messages. These messages serve as the containers into which sets
of program commands or instrument responses are placed. Program
messages are sent by the controller to the instrument, and response
messages are sent from the instrument to the controller in response to a
query message. A query message is defined as being a program message
which contains one or more queries. The instrument will only talk when it
has received a valid query message, and therefore has something to say. The
controller should only attempt to read a response afler sending a complete
query message, but before sending another program message. An important
rule to remember is that the instrument will onty talk when prompted to, and
it then expects to talk before being told to do something else.

Protocol Operation

When the instrument is turned on, the input buffer and output queue are
cleared, and the parser is reset to the root level of the command tree.

The instrument and the controller communicate by exchanging complele
program messages and response messages. This means that the controller
should always terminate a program message before atternpting to read a
response. The instrument will terminate response messages except during a
hardcopy output.

If a query message is sent, the next message passing over the bus should be
the response message. The controller should always read the complete
response message associated with a query message before sending another
program rmessage to the same instrument.

The instrument, allows the controller to send multiple queries in one query
message. This is referred to as sending a "compound query." As noted in
chapter 1, "Multiple Queries," multiple queries in a query message are
separated by semicolons. The responses to each of the queriesin a
compound query will also be separated by semicolons.

Commands are executed in the order they are received.

54

Message Communication and System Functions
Syntax Diagrams

Protocol Exceptions

if an error occurs during the information exchange, the exchange may not be
completed in a normal manner. Sorme of the protocol exceptions are shown
below.

Command Error A command error will be reported if the instrument,
detects a syntax error or an unrecognized command header.

Execution Error An execution error will be reported if a parameter is
found to be out of range, or if the current settings do not allow execution
of a requested command or query.

Device-specific Error A device-specific error will be reported if the
instrument is unable to execute a command for a strictly device
dependent reason.

Query Error A query error will be reported if the proper protocol for
reading a query is not followed. This includes the interrupted and
unterminated conditions described in the following paragraphs.

Syntax Diagrams

The example syntax diagram in this chapter is similar to the syntax diagrams
in the IEEE 488.2 specification. Commands and queries are sent to the
instrument as a sequence of data bytes. The allowable byte sequence for
each functional element is defined by the syntax diagram that is shown.

The allowable byte sequence can be determined by following a path in the
syntax diagram. The proper path through the syntax diagram is any path
that follows the direction of the arrows. If there is a path around an element,
that element is optional. If there is a path from right to left around one or
more elements, that element or those elements may be repeated as many
times as desired.

5-5

Figure 5-1

Message Communication and System Functions
Syntax Diagrams

-

—-;fsvf:}:-\‘——o—'——'f_)r\m\. R » Sa< das .
T N J -

oW DATAT Jeeee—— B - et

I R X
—-GS:‘/\—D sgzce l—b 5Ty ; e s —— %
— 3R — 'y - —

oo '
—® spofe = RNJMa o
_

] i
ey BN)
-—.G:-Q_'__]E":D‘ - f::l_n:E } FD** o ? —-
\b(JV
—{ =TADeT T -
I i NG ey B —

= ~ :
e ONGge . -
e))

NITOIT S

—I—\j“\j—’ space }—Pf':;_"faeﬂ e —

v

\‘.C:) -" ﬁsis _— \ /\ : X_/'
R O e — _ -
\ﬂJ'_- - 5‘}’0 = oathnuz e

. 5
) %ﬁf)ji -
N
0ot

L) —-. e gouca —- zate oy e =
N s o
327007 e - -
h—_ Y

REEIRELL]

Example syntax diagram

5-6

T T

Message Communication and System Functions
Syntax OQverview

See Also

Syntax Overview

This overview is intended to give a quick glance at the syntax defined by
IEEE 488.2. It will help you understand many of the things about the syntax
you need to know,

IEEE 488.2 defines the blocks used to build messages which are sent to the
instrument. A whole string of commands can therefore be broken up into
individual components.

Figure 5-1 is an example syntax diagram and figure 5-2 shows a breakdown of
an example program message. There are a few key iterns to notice:

¢ A semicolon separates commands from one another. Each program
message unit serves as a container for one command. The program
message units are separated by a semicolon.

® A program message is terminated by a <NL> (new line). The recognition
of the program message terminator, or <BMT>, by the parser serves asa

affects command tree traversal.
® Multiple data parameters are separated by a comma.

¢ The first data parameter is separated from the header with one or more
spaces,

® The header SYSTEM:LONGFORM OFF is an example of a compound
header. It places the parser in the machine subsystem until the <NL> is
encountered.

® A colon preceding the command header returns you to the top of the
commangd tree.

Chapter 4, "Prograrnming and Documentation Conventions"

5-7

Message Communication and System Functions
Syntax Overview

Figure 5-2

<£a7ogrom mremos o Luragoom mrergn o> <orug

INTIRMGGLEE INBIRET

()

o]
o
A
o

SO Io>
\ i
Ve
<dec TG nuTEr 0 27ALYCT GILUR <Cec moiotLteTi4 DTG G oIt
2
<Ir0gToT messiuge 1GrTTO

<orogroT Coccer> <progr ot Tecde” SEICroLur>
SACWE fat=

-~

Wi lEe spater <cez'Te pragrom

‘eEeRs3 e

<program message> Parse Tree

R

R

Table 5-1

Message Communication and System Functions
Syntax Overview

Upper/Lower Case Equivalence

Upper and lower case letters are equivalent. The mnemonic SINGLE has
the same semantic meaning as the mnemonic single.

<white space>

<white space> isdefined to be one or more characters from the ASCII set
of 0 - 32 decimal, excluding 10 decimal (NL). <white spaces> isused by
several instrument listening components of the syntax. It is usually optional,
and can be used to increase the readability of a program.

Suffix Multiplier The suffix multipliers that the instrument will accept
are shown in table 5-1.

<suffix mult>

Value Mremonic
1E18 EX
1E15 PE
1E12 T
1E9 G
1E6 MA
1E3 K
1E-3 M
1E-6 U
1E-9 N
1E-12 P
1E-15 F
1E-18 A

5-9

Message Communication and System Functions
Syntax Overview

Suffix Unit The suffix units that the instrument will accept are shown
in table b-2.

Table 5-2

<suffix unit>

Suffix Referenced Unit
Vv Volt

S Second

5-10

Status Reporting

6-1

Introduction

Status reporting allows you to use information about the instrument in
your programs, so that you have better control of the measurement
process. For example, you can use status reporting to determine
when a measurement is complete, thus controlling your program, so
that it does not get ahead of the instrument. This chapter describes
the status registers, status bytes and status bits defined by IEEE

488.2 and discusses how they are implemented in the HP 165008
Logic Analysis System. Also in this chapter is a sample set of steps
you use to perform a serial poll over HP-IB.

The status reporting features available over the bus are the serial and
parallel polls. IEEE 488.2 defines data structures, commands, and
common bit definitions. There are also instrument-defined structures
and bits.

The bits in the status byte act as surnmary bits for the data structures
residing behind them. In the case of queues, the summary bit is set if
the queue is not empty. For registers, the summary bit is set if any
enabled bit in the event register is set. The events are enabled via the
corresponding event enable register. Events captured by an event
register remain set until the register is read or cleared. Registers are
read with their associated commands. The *CLS command clears all
event registers and all queues except the output queue. If *CLS is
sent immediately following a program message terminator, the output
queue will also be cleared.

Figure 6-1

2165008

163214
LONNzLiED

NClz T—2 NIWVIJAL BT ASSGNVENIS =22 7-

.T-(_:WSUJ;:
TIR MODU_E
iW44J(M:S?H
I'l\

SVENT RTOS5 1R
A

"‘ ‘ CINABLD
| Rz STz
; . VIS
JCDDAL D4 ©
2 o
ol
o o]
TT1 1
‘ Li 1]
1
[TTT]
_J3ZA R

OalAl D=

\ | ©lvpao s vt REas iy
‘ | PTERTMARD D S
{MIDJ_= ZVENT ITDSTIR
70% 00U_E
M_S 210!

Z MOD.Z oWENT REGETIRS AR MOZU_Z 52z 0

Status Reporting

7

——

Status Byte Structures and Concepts

YYYYYYYYYY
v T e T [T COMINZD SN SEGSTIR
zslelaizloloizio|a]|y ARSI AR
Qlslel7 s 5l25z T rrig
T ’ | D EwAms
]
LSLLAL DR ‘
FVIN|
RiL37EAS
Lxr 3

2 AND ROI NJ7T M= ZMINTZ)

?| oo RzaAD 3y Y i
;‘. =3] J

|

e [i SIATLS
91 o ; YT
8wt | E

pL-ERIEEH

6-3

Status Reporting
Event Status Register

Event Status Register

The Event Status Register is an IEEE 488.2 defined register. The bits in this
register are "latched." That is, once an event happens which sets a bit, that
bit will only be cleared if the register is read.

Service Request Enable Register

The Service Request Enable Register is an 8-bit register. Each bit enables
the corresponding bit in the status byte to cause a service request. The sixth
bit does not logically exist and is always returned as a zero. To read and
write to this register, use the *SRE? and *SRE commands.

Bit Definitions

The following mnemonics are used in figure 6-1 and in chapter 8, "Common
Cormnmands:"

MAYV - message available
Indicates whether there is a response in the cutput queue.

ESB - event status bit

Indicates if any of the conditions in the Standard Event Status Register are
set and enabled.

MSS - master summary status

Indicates whether the device has a reason for requesting service. This bit is
returned for the *STB? query.

6-4

Status Reporting
Bit Definitions

R@S - request service

Indicates if the device is requesting service. This bit is returned during a
serial poll. RQS will be set to (after being read via a serial poll (MSS is not
reset by *3STB?).

MSG - message

Indicates whether there is a message in the message queue (Not
implemented in the HP 1656008 Logic Analysis Systermn).

PON - power on
Indicates power has been turned on.

URQ - user request
Always returns a (} from the HP 16500B Logic Analysis System.

CME - command error
Indicates whether the parser detected an error.

The error numbers and strings for CME, EXE, DDE, and QYE can be read from a
device-defined queue {which is not part of |IEEE 488.2} with the query

:SYSTEM:ERROR?.

EXE - execution error
Indicates whether a parameter was out of range, or inconsistent with current
settings.

DDE - device specific error

Indicates whether the device was unable to complete an operation for device
dependent reasons.

QYE - query error
Indicates whether the protocol for queries has been violated.

RQC - request control
Always returns a 0 from the HP 165008 Logic Analysis System.

6-5

Status Reporting
Key Features

OPC - operation complete

Indicates whether the device has completed all pending operations. OPC is
controlled by the *OPC common command. Because this command can
appear after any other command, it serves as a general-purpose operation
complete message generator.

LCL - remote to local
Indicates whether a remote to local transition has cceurred.

MSB - module summary bit

Indicates that an enable event in one of the modules Status registers has
occurred.

Example

Key Features

A few of the most important features of Status Reporting are listed in the
following paragraphs.

Operation Complete

The IEEE 488.2 structure provides one technique that can be used to find
out if any operation is finished. The *OPC command, when sent to the
instrument after the operation of interest, will set the OPC bit in the
Standard Event Status Register. If the OPC bit and the RQS bit have been
enabled, a service request will be generated. The commands that affect the
OPC bit are the overlapped commands.

OUTPJT XXX;"*SRE 32 ; *ESE 1" lenables an OPC service
regquest

Status Byte

The Status Byte contains the basic status information which is sent over the
bus in a serial poll. If the device is requesting service (RQS set), and the
controller serial-polls the device, the R@S bit is cleared. The MSS (Master

6-6

Status Reporting
Key Features

Summary Status) bit (read with *STB?) and other bits of the Status Byte are
not be cleared by reading them. Only the RQS bit is cleared when read.

The Status Byte is cleared with the *CLS common command.

Figure 6-2,

— STATUS SUMMARY MESSAGES —

Ly e

S
rsefuav] 3 [2 [1 [@] t sratus evre resrster

J

SERVICE
REQUEST
CENERATION
f

-e—— READ BY »STB?

LOGICAL OR

[
-

&=

e B KN EX RN R [virids -
+SRE <NR(>
*SRE?

16U AL A

Service Request Enabling

Status Reporting
Serial Poll

Serial Poll

The HP 165008 Logic Analysis System supports the IEEE 488.1 serial poil
feature. When a serial poll of the instrument is requested, the RQS bit is
returned on bit 6 of the status byte.

Using Serial Poll (HP-1B)

This example will show how to use the service request by conducting a serial

poll of all instruments on the HP-IB bus. In this example, assume that there

are two instruments on the bus: the logic analyzsis system at address 7and a

printer at address 1.

The program command for serial poll using HP BASIC 6.2 is Stat =

SPOLL(707). The address 707 is the address of the logic analysis system in

the this example. The command for checking the printer is Stat =

SPOLL(701) because the address of that instrument is 01 on bus address 7.

This command reads the contents of the HP-IB Status Register into the

variable called Stat. At thal time bit 6 of the variable Stat can be tested to

seeif it is set (bit 6 = 1).

The serial poll operation can be conducted in the following manner:

1 Enable interrupts on the bus. This allows the controller to see the
SRQ line.

2 Disable interrupts on the bus.

3 [f the SRQ line is high (some instrument is requesting service) then
check the instrument at address 1 to see if bit 6 of its status register is
high.

4 To check whether bit 6 of an instruments status register is high, use
the following BASIC statemente: IF BIT (Stat, &) THEN

5 If bit 6 of the instrument at address 1 is not high, then check the
instrument at address 7 to see if bit 6 of its status register is high.

6 As soon as the instrument with status bit 6 high is found check the
rest of the status bits to determine what is required.

The SPOLL(707) command causes much more to happen on the bus than

simply reading the register. This command clears the bus automatically,

addresses the talker and listener, sends SPE (serial poll enable) and SPD

(serial poll disable) bus commands, and reads the data. For more

information about serial poll, refer to your controller manual, and

programming language reference manuals.

6-8

Status Reporting
Parailel Poll

After the serial poll is completed, the RQS bit in the HP 165008 Logic
Analysis System Status Byte Register will be reset if it was set. Once a bit in
the Status Byte Register is set, it will remain set until the status is cleared
witha *CLS command, or the instrument is reset,

Parallel Poll

Parallel poll is a controller initiated operation which is used to obtain
information from several devices simultaneously. When a controlier injtiates
a Parallel Poll, each device returns a Status Bit via one of the DO data lines.
Device DIO assignments are made by the controller using the PPC (Paralle!
Poll Configure} sequence. Devices respond either individually, each on a
separate DIO line; collectively on a single DIO line; or any combination of
these two ways. When responding collectively, the result is a logical AND
(True High) or logical OR (True Low) of the groups of status bits.

Figure 6-3 shows the Parallel Poll Data Structure. The summary bit is sent in
response to a Parallel Poll. This summary bit is the "ist" (individual status)
local message.

The Parallel Poll Enable Register determines which events are summarized in
the ist. The *PRE command is used to write to the enable register and the
*PRE? query is used to read the register. The *T3T? query can be used to
read the "ist" without doing a parallel poll.

Status Reporting

Parallel Poll
Figure 6-3
DEVICE DEFINED GONDITIONS SUMMARY MESSAGE
DEVICE DEFINED Mg a[naf12] [0 s8] |7 [uss[esa]vaviicL] 2 | 1 [uss SR ETE
25787

&

A
- &
- P

I
- 3
T X
- e
\i \‘15
- (&
5 “}15 ’
3 A
- &
- i é
P i)&5
) P
B \i Y
- ()
3)5
- (s
- &
TR BUAL [is[afraf12]]e]ae] [7]6]s [«[s]2]1]e |EN';"}3R&‘;:R§E;GIPSOTLELR
16508 /829

Paralle! Poll Data Structure

Status Reparting
Polling HP-IB Devices

Polling HP-IB Devices

Parallel Poll is the fastest means of gathering device status when several
devices are connected to the bus. Each device (with this capability) can be
programmed to respond with one bit of status when parallel polled. This
makes it possible to obtain the status of several devices in one operation. If a
device responds affirmatively to a paralle} poll, more information about its
specific status can be obtained by conducting a serial poll of the device.

Example

Configuring Parallel Poll Responses

Certain devices, including the ITP 165008 Logic Analysis System, can be
remotely programmed by a controller to respond to a parallel poll. A device
which is currently configured for a parallel poll responds to the poll by
placing its current status on one of the bus data lines. The response and the
data-bit number can then be programmed by the PPC (parallel poil
configure) statement, No multiple listeners can be specified in this
statement. If more than one device is to respond on a single bit, each device
must be configured with a separate PPC statement.

ASSIGN @Device TO 707
PPOLL CONFIGURE @Device;Mask

6-11

Example

Status Reporting
Conducting a Parailel Poll

The value of Mask (any numeric expression can be specified) is first rounded
and then used to configure the device's parallel response. The least
significant 3 bits (bits 0 through 2) of the expression are used to determine
which data line the device is to respond on (place its status on). Bit 3
specifies the "true" state of the parallel poll response bit of the device. A
value of 0 implies that the device’s respense is 0 when its status bit message
is true.

The following statement configures the device at address 07 on the interface
select code 7 to respond by placing a 0 on bit 4 when its status response is
"true."

PPOLL CONFIGURE 707:4

Example

Conducting a Parallel Poll

The PPOLL (Parallel Poll) function returns a single byte containing up to 8
status bit messages for all devices on the bus capable of responding to the
poll. Each bit returned by the function corresponds to the status bit of the
device(s) configured to respond to the parallel poll (one or more devices can
respond on a single line). The PPOLL function can only be executed by the
coniroller. Tt is initiated by the simultaneous assertion of ATN and EOL

Response = PPOLL{7)

Status Reporting
Disabling Parallel Poll Responses

Examples

Disabling Parallel Poll Responses

The PPU (Paraliel Poll Unconfigure) statement gives the controller the
capability of disabling the parallel poll responses of one or more devices on
the bus.

The following statement disables device 5 only:

PPOLL UNCONFIGURE 70%

This statement disables all devices on interface select code 8 from
responding to a parallel poll:

PPOLL UNCCNFIGURZE 8

If no primary address is specified, all bus devices are disabled from
responding to a parallel poll. If a primary address is specified, only the
specified devices (which have the parailel poll configure capability) are
disabled.

HP-IB Commands

The following paragraphs describe actual HP-IB commands which can be
used to perform the functions of the Basic commands shown in the previcus
examples.

Parallel Poll Unconfigure Command

The parallel poll unconfigure command (PPU) resets all paralle! poll devices
to the idle state (unable to respond to a parallel poll}.

Parallel Poll Configure Command

The parallel poll configure command (PPC) causes the addressed listener to
be configured according to the parallel poll enable secondary command PPE.

Table 6-1

Status Reporting
HP-IB Commands

Parallel Poll Enable Command

The parallel poll enable secondary command (PPE) configures the devices
which have received the PPC command to respond to a parallel poil on a
particular HP-IB DIO line with a particular level.

Parallel Poll Disable Command

The parallel poll disable secondary command (PPD) disables the devices
which have received the PPC command from responding to the parallel poll.

Parallel Poll Commands

Command

Parallel Poll Unconfigure
{Multiline Command)

Parallel Poll Configure
{Addressed Command}

Parallel Poll Enable
{Secondary Command}

Parallel Poli Disable
{Secondary Command}

Mnemonic

PPU

PPC

PPE

PPD

Decimal

Code
21

05

96-111

12

ASCHASC
Character

NAK

ENO

-0

Error Messages

-1

Introduction

This chapter lists the error messages that relate to the HP 16500B
Logic Analysis System.

Error Messages
Device Dependent Errors

Device Dependent Errors

200
201
202
203
300

Label not found
Pattern string invalid
Qualifier invalid
Data not available
RS-232C error

Command Errors

~-100
-101
-110
-111
-120
-121
-123
-129
-130
-131
-132
-133
-134
-139
-142
-143
-144

Command error (unknown command)(generic error)
Invalid character received

Command header error

Header delimiter error

Numeric argument error

Wrong data type (numeric expected)

Numeric overflow

Missing numeric argument

Non numeric argument error {character,string, or block)
Wrong data type (character expected)

Wrong data type (string expected)

Wrong data type (block type #D required)

Data overflow (string or block too long)

Missing non numeric argument

Too many arguments

Argument delimiter error

Invalid message unit delimiter

Error Messages
Execution Errors

Execution Errors

-200 Can Not Do (generic execution error)
-201 Not executable in Local Mode

-202 Settings lost due to return-to-local or power on
-203 Trigger ignored

-211 Legal cormrnand, but settings conflict
-212 Argument out of range

-221 Busy doing something else

-222 Insufficient capability or configuration
-232 Output buffer full or overflow

240 Mass Memory error (generic)

-241 Mass storage device not present

-242 No media

-243 Bad media

-244 Media full

-245 Directory full

-246 File name not found

-247 Duplicate file name

-248 Media protected

Internal Errors

-300 Device Failure (generic hardware error)
-301 Interrupt fault

-302 System Error

-303 Time out

-310 RAM error

-311 RAM failure (hardware error)

U

Error Messages
Query Errors

-312 RAM data loss (software error)

-313 Calibration data loss

-320 ROM error

-321 ROM checksum

_322 Hardware and Firmware incormpatible
-330 Power on test failed

-340 Self Test failed

_350 Too Many Errors (Error queue overflow)

Query Errors

-400 Query Error (generic)

-410 Query INTERRUFTED

-420 Query UNTERMINATED

—421 Query received. Indefinite block response in progress
-422 Addressed to Talk, Nothing to Say

-430 Query DEADLOCKED

7-5

7-6

Part 2

8 Common Commands 8-1

9 Mainframe Commands 9-1
10 SYSTer Subsystern 10-1

11 MMEMory Subsystem 11-1
12 INTermodule Subsystem 12-1

Commands

Common Commands

8-1

Example

Introduction

The common commands are defined by the [EEE 488.2 standard.
These commands must be supported by all instruments that comply
with this standard. Refer to figure 8-1 and table 8-1 for the cornmon
commands syntax diagram.

The common commands control some of the basic instrument
functions; such ag, instrument identification and reset, how statusis
read and cleared, and how commands and queries are received and
processed by the instrument. The common commands are:

e *CLS ¢ *PRE
e *ESE o *RST
e *ESR e *SRE
e *IDN e *STB
o *IST e *TRG
e *QPC o *TST
s *OPT o *WA]

Common commands can be received and processed by the HP 16500B
Logic Analysis Systemn, whether they are sent over the bus as separate
program messages or within other program messages. If an
instrument subsystem has been selected and a common command is
received by the instrument, the system will remain in the selected
subsystem.

If the program message in this example is received by the system, it
will initialize the disk and store the file and clear the status
information. This is not the case if some other type of command is
received within the program message.

" :MMEMORY : INITIALZZE; *CLS; STORE ‘FILE ', 'DESCRIPTION'"

8-2

Example

See Also

Common Commands

This program message initializes the disk, selects the module in slot A,
then stores the file. In this example, :MMEMORY must be sent again
in order to reenter the memory subsystern and store the file.

" MMEMORY : INTTIALIZE; : SELECT Z; :MMEMORY:STORE ‘FILE /,
"DESCRIPTZON'"

Status Registers

Each status register has an associated status enable (mask) register.
By setting the bits in the status enable register you can select the
status information you wish to use. Any status bits that have not been
masked (enabled in the enable register) will not be used to report
status surunary information to bits in other status registers.

Chapter 6, "Status Reporting," for a complete discussion of how to
read the status registers and how to usc the status information
available from this instrument.

8-3

Common Commands

Figure 8-1

@
Q
)
—
-3

f

—DGP—R@—‘—{ space H pre_mask ,—b

*PRE? g

=RST -

0

»SRE spoce moask

«SRE?

*5T8?

«TRG -

¥

*T5T7?

vy

BBEE

WAL
16508./5X8 1

Common Commands Syntax Diagram

Tabile 8-1

Common Commands
*CLS (Clear Status)

Comman Command Parameter Values

Parameter Values

mask An integer, 0 through 255.
pre_mask An integer, 0 through 65535,

Command

Example

See Also

*CLS (Clear Status)

*CLS

The *CLS common command clears all event status registers, queues, and
data structures, including the device defined error queue and status byte. If
the *CLS command immediately follows a program message terminator, the
output queue and the MAV (Message Available) bit will be cleared.

QUTPUT XXX;"*CLg"

Refer to chapter 6, "Status Reporting,” for a complete discussion of status.

8-5

...w.,... .o

Common Commands
*ESE {Event Status Enable)

Command

<mask>

Example

Query

Returned Format

Example

See Also

*ESE (Event Status Enable)

*ESE <masks>

The *ESE command sets the Standard Event Status Enable Register bits.
The Standard Event Status Enable Register contains a bit to enable the
status indicators detailed in table 8-2. A 1 in any bit position of the Standard
Event Status Enable Register enables the corresponding status in the
Standard Event Status Enable Register.

An integer from () to 2556

In this example, the *ESE 32 command will enable CME (Cormand Error),
bit 5 of the Standard Event Status Enable Register. Therefore, when a
command error occurs, the event summary bit (ESB) in the Status Byte
Register will also be set.

QUTPUT XXX; "*ESE 32°

*ESE?

The *ESE query returns the current contents of the enable register.

<mask><NL>

OUTPUT XXX;“*ESE?"

Refer to Chapter 6, "Status Reporting" for a complete discussion of status.

8-6

Common Commands
*ESR {Event Status Register)

Table 8-2 Standard Event Status Enable Register
Bit Position Bit Weight Enables
7 128 PON - Power On
6 64 URQ - User Request
5 32 CME - Command Error
4 16 EXE - Execution Error
3 8 DDE - Device Dependent Error
2 4 QYE - Query Error
] 2 RQC - Reguest Control
0 1 OPC - Qperation Complete

*ESR (Event Status Register)

Cuery *ESR? '

The *ESR query returns the contents of the Standard Event Status Register.
Reading the register clears the Standard Event Status Register.

Returned Format <status»<NL»

<gtatus> Aninteger from () to 255

Example If a command error has cccurred, and bit & of the ESE register is set, the
string variable Esr_event$ will have bit 5 (the CME bit} set.

10 OUTPUT XXX;"*ESE 32 lEnables pit 5 of the status register
20 OUTPUT XXX;"*ESR?" 'Queries the status register
30 ENTER XXX; Esr_event$ 'Reads the cuery bpuffer

Common Commands
*ESR {Event Status Register)

Table 8-3 shows the Standard Event Status Register. The table details the
meaning of each bit position in the Standard Event Status Register and the
bit weight. When you read Standard Event Status Register, the value
returned is the total bit weight of all the bits that are high at the time you
read the byte.

Table 8-3 The Standard Event Status Register

Bit Position Bit Weight Bit Name Condition

7 128 PON 0 = register read - not in power up mode
1 = power up
6 64 URQ 0= user request - nat used - always zero
5 32 CME 0=no command errors
1 = a command eror has been detected
4 16 EXE 0 = no execution errors
1 = an exacution error has been detected
3 8 DDE 0 = no device dependent error has been detected
1 = a device dependent error has been detected
2 4 (1A {3 0 = no query errors
1=aquery error has been detected
1 2 RQC 0 = request caontrol - not used - always zero
0 1 arcC 0 = operation is not complete

1 = operation is complete

Common Commands
*IDN {Identification Number)

Query

Returned Format

*IDN (Identification Number)

*TDN?

The *IDN? query allows the instrument to identify itself. It returns the string:

"HEW_ETT-PACKARD, 165003, 0,REV <revision_code>"

An *IDN? query must be the last query in a message. Any queries after the
*IDN? in the program message are ignored.
EEWLETT-2ACKARD, 165008, 0, REV «<revision codex»

Four digit-code in the format XX . XX representing the current ROM revision.

<revision
code>
Example OQUTPUT XXX; "*TDN?"
*[ST (Individual Status)
Query *IQT?

Returned Format

<id>
1

0

The *IST query allows the instrument to identify itself during paraliel poll by
allowing the controller to read the current state of the IEEE 488.1 defined
“ist” local message in the instrument. The response to this query is
dependent upon the current status of the instrument.

Figure 8-2 shows the *IST data structure.

<id><NL>
Oorl

Indicates the "ist" local message is false.

Indicates the "ist" local message is true.

8-9

Common Commands
*IST (Individual Status)

Example QUTPUT XXX;"*IST?"
Figure B-2
DEVICE DEFINED CONDITIONS SUMMARY MESSAGE
O b1 TiEAe? [as[aTha[z|n e[s [s] [7 [uss[esa]mav]ic] 2 [1 |wse] SL'}TGEIfSB‘rle}TE
2
1
(s
f)

[}

=

A
-
(e

(e

(e

LOGLCAL OR
]
(o
e
NS

oo 2 ot

[
o

Y
- b
ot UL [i5]valafrz[n]wes[s] [7]s]s]4a]3]z]1]e Izrfnfsﬂl.‘}:'::n:stcr%z%?
18509/BL 29
*IST Data Structure

8-10

Common Commands
*0PC (Operation Complete)

Command

Example

Query

Returned Format

Example

*OPC (Operation Complete)

*0OPC

The *OPC command will cause the instrument to set the operation compiete
bit in the Standard Event Status Register when all pending device operations
have finished. The commands which affect this bit are the overlapped
commands. An overlapped command is a command that allows execution of
subsequent commands while the device operations initiated by the
overlapped command are still in progress. The overlapped commands for the
HP 165008 are STARt and STOP.

QUTPUT XXX; "*0rC"

*QPC?

The *OPC query places an ASCII "1" in the output queue when all pending
device operations have been completed.

1<NL>

OUTPUT XXX; "*OPC2™

8-11

e

Common Commands
*0OPT {Option Identification)

Query

Returned Format

<option>

<modules

Example

*OPT (Option Identification)

*OPT?

The *OPT query identifies the software installed in the HP 16500B. This
query returns nine parameters. The first parameter indicates whether you
are in the System. The next two parameters indicate any software options
installed, and the next parameter indicates whether intermodule is available
for the System. The last five parameters list the installed software for the
modules in slot A through E for an HP 165008 mainframe. When an

HP 16501 A Expansion frame is connected, there will be ten parameters after
the INTERMODULE for modules in slots A through J. A zero in any of the
last cight parameters indicates that the corresponding software is not
currently installed.

{SYSTEM}, {<option>|0}, {<option> |0}, {INTERMODULE |0}, {<module>|0}
, {<modulex> |0}, {<module>|0}, {<module>| 0}, {<module>|[0}

r [T N B ot | SIS P SRR Y afh | R R sy 1T ~
[, i<IDOGlEr |V, +<IMOTL1E | V), {\.l\udul:/ | D} A {{uluuulC/ 107 ’

{<module> |0}]<NL>

Name of software option

Name of module software

OUTPUT XXX;"*0PT?"

Common Commands
*PRE (Parallel Poll Enable Register Enable)

Command

<pre_mask>

Example

Query

Returned format

<mask>

Example

See Also

*PRE (Parallel Poll Enable Register Enable)

*PRE «<mask>

The *PRE command sets the parallel poll register enable bits. The Parzllel
Poll Enable Register contains a mask value that is ANDed with the bits in the
Status Bit Register to enable an "ist" during a parallel poll. Refer to table 8-4
for the bits in the Parallel Poll Enable Register and for what they mask.

An integer from (to 656535,

This exarple will allow the HP 16500B to generate an "ist" when a message is
available in the output queue. When a message is available, the MAV
(Message Available) bit in the Status Byte Register will be high.

QUTPUT XXX;"*2RE 16"

*PRE?

The *PRE? query returns the current value of the register.

<mask><NL>

An integer from 0 through 65535 representing the sum of all bits that are set. .

OUTPUT XXX; "*PRE?"

Chapter 6, "Parallel Poll," for more informaion on how to conduct a parallel
poll.

Common Commands
*RST (Reset)

Table 8-4 HP 16500B Parallel Poll Enable Register

Bit Position Bit Weight Enables

15-8 Not used

7 128 Not used

64 MSS - Master Summary Status
32 ESB - Event Status

16 MAV - Message Available

8 LCL- Local

4 Not used

2 Not used

1 MSB - Modute Summary

T — MW e

*RST (Reset)

The *RST command is not implemented on the HP 165008. The HP 165008
will accept this command, but the command has no affect on the system.

The *RST cornmand is generally used to place the system in a predefined
state. Because the HP 16500B allows you to store predefined configuration
files for individual modules, or for the entire system, resetting the system can
be accomplished by simply loading the appropriate configuration file.

See Also For more information, refer to chapter 11, "MMEMory Subsystem.”

8-14

Commen Commands
*SRE {Service Request Enable)

Command

<mask>

Example

Query

Returned Format

<masgk>

Example

See Also

*SRE (Service Request Enable)

*SRE <mask>

The *SRE command sets the Service Request Enable Register bits. The
Service Request Enable Register contains a mask value for the bits to be
enabled in the Status Byte Register. A one in the Service Request Enable
Register will enable the corresponding bit in the Status Byte Register. A zero
will disable the bit. Refer to table 8-b for the bits in the Service Request
Enable Register and what they mask.

An integer from 0 to 265

This example enables a service request to be generated when a message is
available in the output queue. When a message is available, the MAV
(Message Available) bit will be high.

QUTPUT XXX;"*3RE 16"

*SRE?
The *SRE query returns the current value.

<mask><NL>

An integer from 0 to 255 representing the sum of all bits that are set.

QUTPUT XXX; "*SRE?"

Refer to Chapter 6, "Status Reporting," for a complete discussion of status.

Table 8-5

Common Commands
*$STB (Status Byte)

HP 16500B Service Request Enable Register

Bit Position Bit Weight Enables

15-8 not used

7 128 not used

6 64 MSS - Master Summary Status {always 0)
5 32 ESB - Event Status

4 16 MAV - Message Available

3 8 LCL- Loca

2 4 notused

1 2 not used

0 1 MSB - Module Summary

Query

Returned Format

<values

Example

See Also

*STB (Status Byte)

*STB?

The *STB query returns the current value of the instrument’s status byte.
The MSS (Master Summary Status) bit, and, not the RQS (Request Service)
bit is reported on bit 6. The MSS indicates whether or not the device has at
least one reason for requesting service. Refer to table 8-6 for the meaning of
the bits in the status byte.

<value><NL>

An integer from 0 through 255

OUTPUT XXX; "*STE?"

Refer to Chapter 6, "Status Reporting" for a complete discussion of status.

8-16

Table 8-6

0 = False = Low
1=True = High

Common Commands
*TRG (Trigger)

The Status Byte Register

Bit Position Bit Weight Bit Name

7 128

6 64 MSS
5 32 ESB
4 16 MAV
3 8 LCL
2 4

i 2

0 1 MSB

Condition
0= not Used

0 = instrument has no reason for service

1 =instrument is requesting service

0 = no event status conditions have occurred

1 = an enabled event status condition has occuired

0 =no output messages are ready
1= an output message is ready

0 = a remote-to-local transition has not occurred
1 = a remote-to-local transition has occurred

not used
not used

0 = a module or the system has activity to report

1 = no activity to report

Command

Exampte

*TRG (Trigger)

*TRG

The *TRG command has the same effect as a Group Execute Trigger (GET).
That effect is as if the START command had been sent for intermodule group
run. If no modules are configured in the Intermodule menu, this command

has no effect.

OUTPUT XXX; "*TRG"

H

Common Commands
*TST (Test)

Query

Returned Format

<result>

Example

Table 8-7

*TST (Test)

*TS8T?

The *TST query returns the results of the power-up self-test. The result of
that test is a 9-bit mapped value which is placed in the output queue. A one
in the corresponding bit means that the test failed and a zero in the
corresponding bit means that the test passed. Refer to table 8-7 for the
meaning of the bits returned by a TST? query.

<result><NL>

An integer 0 through 511

20 QUTPUT XXX "*TgT?"
20 ENTER XXX;Tst_value

Bits Returned by *TST? Query (Power-Up Test Results)

Bit Position Bit Weight Test

8 256 Disk Test

7 128 not used

6 64 not used

5 32 Front-panel Test
4 16 HiL Test

3 8 Display Test

2 4 Interupt Test

i 2 RAM Test

0 i ROM Test

Common Commands
*WAI (Wait)

Command

Example:

*WAI (Wait)

*WATL

The *WAI command causes the device to wait until completing all of the
overlapped commands before executing arny further commands or queries.
An overlapped command is a command that allows execution of subsequent
commands while the device operations initiated by the overlapped comrmand
are still in progress. Some examples of overlapped commands for the

HP 16500B are STARt and STCP.

OUTPUT XXX; "*WAI"

8-19

8-20

Mainframe Commands

9-1

Introduction

Mainframe commands control the basic operation of the instrument
for both the HP 16500B mainframe alone or with the HP 16501A
expansion frame connected. Mainframe commands can be called at
anytime, and from any module. The only difference in mainframe
commands with an HP 16501 A connected is the number of slots and
modules. These differences will be noted in the affected command

descriptions.

The main difference between an HP 16500B alone and an HP 16500B
with the HP 16501 A connected is how you specify the SELECT
command. Remember, the HP 16500B alone has only five slots;
therefore, if you specify 6 through 10 for the SELECT command in
your program, the command parser will take no action.

This chapter contains the mainframe commands with a syntax
example for each command. Each syntax example contains the
parameters for the HP 16500B/16501A. Refer to figure 9-1 and table
9-1 for the Mainframe commands syntax diagram.

The mainframe commands are:

s BEEPer MESE

e CAPability MESR

¢ CARDcage EMODe
s CESE RTC

* CESR SELect

s EOI SETColor
s LER STARt

» LOCKout STOP

» MENU XWINdow

9-2

Mainframe Commands

Figure 3-1

N
N i _ o T B \‘/—-‘
-~ ~
—={ ={57re] S -
g
—I—\g—‘ o] I — —_—
\r@i\lﬂt\n—/
e - .
: N -

3 - . -

—aei CATCE LYY
h —

- —
T [-
ot)
e[LEnE) - - -
Dol LinE —-
{257 E— _ — — — —_—
k-‘:ZS@ _— — — —_—
_ i
—/—? e ——-—73“ e b —--/0”3 - —— —— —
NS - AN
‘\-—/C'\J—‘\)—/
B N
D
) - N
Lot - —_ - - ——_— Y — — T
J—

g N I [L
—tkas p e spaze {250 e —— -
RS S
LI--\“_CJ:_-(::J'P e _ — — /T T —
-- -\V,N;J) —— —W suuce - W N0CdE I — 1 —_

\P'KJ‘\I—F' mend)
! R
e e — —
Y '
1030051/

Mainframe Commands Syntax Diagram

9-3

J—

Figure 9-1{continued)

Mainframe Commands

i
—
\—h\‘.—)—b L P
e MENS? e e — e e e e S
—b—@——; ~gex \——- souie i——-—l- Erav.e vu oz }——

BT . Iy —

bf—\‘l_:_ — gax ———_/, —
—e{(M=57 _— - w:eﬂ 4-@. . S —— B
— w300 souza —"'\S Noe) i -

!

| :
JTC) - sonce |omme Oy [- o0t —D-Q)—D yeQr ——-Q—b- RIS] ~,
: Lb—’/\ ’ i u:emv—- . sagmd | -
' : '
— R— | .

- ST et ——® gpgce [—— @ madae } - -
—- - - R -

oz _»(.,_—\
—m S=TCoc SE=aar !
S v .

e

./
ace

CERTE

- STAR - - - Ll
(s100} — — S,

[N o S sty
KW Ndow } o e J5F0 .
) -

- -
kﬁ(;)—l- dsoay :l.f_'le\w
16500523

Mainframe Commands Syntax Diagram (continued)

9-4

Table 9-1

Mainframe Commands

Mainframe Parameter Values

Parameter

value
module

menu
enabie_value
index

day

maonth

year

hour

minute
second
color

hue

sat

lum

display name

Vaiues

An integer from 0 to 65535.

An integer from -2 through 5 for an HP 16500B alone or from
-2 through 10 with an HP 16501A connected.

An integer.

An integer from 0 to 255.

Aninteger from 0tob.

An integer from 1 through 31

An integer from 1 through 12

An integer from 1990 through 2089

An integer from 0 through 23

An integer from 0 through 59

An integer fram 0 through 59

Aninteger from 1to 7.

Aninteger from 6 to 100.

An integer from 0 to 100.

An integer from 0 to 180.

A string eentaining an Internet Address and a display name,
for example, 12.3.19.1:0.0".

9-5

Mainframe Commands
BEEPer

Command

Example

Query

Returned Format

Example

BEEPer

:BEEPer [{ON{1} |{OFFiQd}]

The BEEPer command sets the heeper mode, which turns the beeper sound
of the instrument on and off. When BEEPer is sent with no argument, the
beeper will be sounded without affecting the current mode.

OUTPUT XXX;":BE
QUTPUT XXX;":BE

:BEEPer?

The BEEPer? guery resurns the mode currently selected.
[:BEEPer] {1]0}<NL>

QUTPUT XXX;":BEEPER?"

Mainframe Commands
CAPability

Query

Returned Format

Example

Tabie 9-2

CAPability

:CAPability?

The CAPability query returns the IEEE 488.1 “Interface Requirements for
Devices" capability sets implemented in the device.

Table 9-2 lists the capability sets implemented in the HP 165008B.
[:CAPability! IEEE488,1987,8H1,A41,T5,L4,SR1,RL1, PP1,DC1,
D7T1,C0, E2<NL»>

OUTPUT XXX; " :CAPABILITY?"

HP 16500B Capability Sets

Mnemonic Capability Name Implementation
SH Source Handshake SHt
AH Acceptor Handshake AH1
T Talker {or TE - Extended Talker) T5
L Listener {or LE - Extended Listener) L4
SR Service Request SR1
RL Remote Local RL1
PP Parallel Poll PP1
DC Device Clear DE1
DT Device Trigger DT1
C Any Controller Co
E Electrical Characteristic E2

9-7

Mainframe Commands
CARDcage

Ouery

Returned Format

<ID>

<assigns>

Example

CARDcage

: CARDcage?

The CARDcage query returns a series of integers which identifies the
modules that are installed in the mainframe. For an HP 16500B alone, the
first five numbers returned are the card identification numbers (a -1 means
ne card is in the slot). The remaining five numbers returned indicate the
module assignment for each card. The possible vatues for the module
assignment are 0, 1, 2, 3, 4, and 5 where 0 indicates an empty slot or the
madule software is not recognized or not loaded. 1...5 indicates the number
of the slot in which the master card for this card is located.

When an HP 16501A is connected, the first ten numbers returned are the
card identification numbers (a -1 means no card is in the slot}. The
remaining ten numbers returned indicate the module assignment for each
card. The possible values for the module assignment are 0 through 10 where
0 indicates an empty slot or the module software is not recognized or not
loaded. 1...10 indicates the number of the slot in which the master card for
this card is located.

Table 9-2 lists the card identification numbers for the first five parameters
and their associated cards.

[+CARDcage]

<TD»,<ID»,<ID>, <ID>,<ID>, [«ID>,<ID>,<ID>, < D>, <ID>,]
<assigns,<assigns,<assign>, <assign>,<asslign>
[,<assign>,<assigns>,<assign>, <agsign>, <assign>]<NL>

An integer indicating the card identification number.

An integer indicating the medule assignment.

OQUTPUT XXX;™:CARDCAGE=?"

Table 9-2

Mainframe Commands
CARDcage

Card Identification Numbers

Id Number

1

2

1
12
13
21
2
30
K]
32
33
40
4
42
43

Card

HP 16515A 1 GHz Timing Master Card

HP 16516A 1 GHz Timing Expansion Card
HP 16530A Oscilloscope Timebase Card
HP 16531A Oscilloescope Acquisition Card
HP 16532A Oscilloscsope Card

HP 16520A Pattern Generator Master Card
HP 16521A Pattern Generator Expansion Card
HP 16511B Logic Analyzer Cards

HP 16510A or B Logic Analyzer Card

HP 16550A Logic Analyzer Master Card
HP 16550A Logic Analyzer Expansion Card
HP 16540A Logic Analyzer Card

HP 16541A Logic Analyzer Card

HP 16542A Logic Analyzer Master Card

HP 16542A Logic Analyzer Expansion Card

Mainframe Commands
CESE {Combined Event Status Enable)

Command

<value>

Example

Query

Returned Format

. Example

CESE (Combined Event Status Enable)

:CESE <value>

The CESE command sets the Combined Event Status Enable register. This
register is the enable register for the CESR register and contains the
combined status of all of the MESE (Module Event Status Enable) registers
of the HP 16500B. Table 9-3 lists the bit values for the CESE register.

An integer from 0 to 656535

OUTPUT XXX;":CESE 32"

:CESE?

The CESE? query returns the current setting.
[:CESE] <va ue><NL:>

OUTPUT XXX;":CESE?"

Mainframe Commands
CESR (Combined Event Status Register}

Table 9-3 HP 165008 Combined Event Status Enable Register

Bit Weight Enables

11-15 not used

10 1024 Module in siotJ
9 512 Module in slot !
8 256 Module in slotH
7 128 Module in slotG
] B4 Madule in slot F
5 32 Module in slotE
4 16 Module in slotD
3 8 Module in slot C
2 4 Maodule in siot B
1 2 Module in slot A
0 1 intermodule

CESR (Combined Event Status Register)
Query :CESR? .

The CESR query returns the contents of the Combined Event Status register.
This register contains the combined status of all of the MESRs {Module Event
Status Registers) of the HP 165008 System. Table 9-4 lists the bit values for
the CESR register.

Returned Format [:CESR] <value><NL>

<value> An integer from 0 to 656535

Example QUTPUT XXX;":CESR?"

9-11

Mainframe Commands
CESR (Combined Event Status Register)

Table 9-4 HP 16500B Combined Event Status Register
Bit Bit Weight Bit Name Condition
11-15 0 = not used
10 1024 Modute J 0 = No new status
1 = Status to report
g 512 Module | 0 = No new status
1 = Status to report
8 256 Maodule H 0 = No new status
1 = Status to report
7 128 Module G 0 = No new status
1 = Status to report
6 64 Module F 0 = No new status
1 = Status to report
5 32 Module E 0 = No new status
1 = Status to report
4 16 Maodule D ¢ = No new status
1 = Status to report
3 8 Module C 0 = No new status
1 = Status to report
2 4 Module B 0 = No new status
1 = Status to report
1 2 Module A 0 = No new status
1 = Status to report
0 1 Intermodule 0 = Na new status

1 = Status to report

Mainframe Commands
EOQ1 (End Or Identify)

Command

Example

Query

Returned Format

EOI (End Or Identify)

:EOI {{ONI1}I{OFFI0}}

The EOI command specifies whether or not the last byte of a reply from the
instrument is to be sent with the EQI bus control line set true or not. If EQI
is turned off, the logic analyzer will no longer be sending IEEE 488.2
compliant responses.

OUTPJIT XXX;":EOI ON*

:EOTI?

The EOI? query returns the current status of EOL
[:EOZI] {1]0}<NL>

Example OUTDPUT XXX;":EQI?"
LER (LCL Event Register)
Query :LER?

Returned Format

The LER query allows the LCL Event Register to be read. After the LCL
Event Register is read, it is cleared. A one indicates a remote-to-local
transition has taken place. A zero indicates a remote-to-local transition has
not taken place.

[:LER] {0]2}<NL>

Mainframe Commands
LOCKout

Example QUTPUT XXX;":LER?"
LOCKout

Command :LOCKout {{ON|1}|{QFF|0}}
The LOCKout command locks out or restores front panel operation. When
this function is on, all controls (except the power switch) are entirely locked
out.

Example QUTPUT XXX; ":OQCKOUT ON"

. Query

Returned Format

Example

: LOCKout?

The LOCKout query returns the current status of the LOCKout command.
T:LOCKout] {0:1}<NL>

QUTPUT XXX;":LOCKOUT?"

9-14

Mainframe Commands
MENU

Command

<module>

<Imermu=

Example

Table 9-5

MENU

tMENU <modules [, <menu>]

The MENU command puts a menu on the display. The first parameter
specifies the desired module. The optional second parameter specifies the
desired menu in the module (defaults to 0). Table 9-5 lists the module
parameters. The mainframe menus and their parameters are listed in table
9-6.

Selects module or system. An integerfrom -2 through 5 for HP 165008 only
or an integer from -2 through 10 with an HP 16501 A connected.

Selects menu (integer)

OUTPUT X¥X;":MENJ 0,1"

First Parameter Values

Parameter Menu
0 System/Intermodule
1 Maodule in slot A
2 Module in slot B
3 Moduie in slotC
4 Module in slotD
5 Module in slotE

-1 Software option 1
-2 Software option 2
Available when an HP 16501A is connected:
6 Module in slotF

7 Module in slotG

8 Module in slotH

9 Module in slot|

0 Maodule in slotJ

Table 9-6

Query

Returned Format

Example

Mainframe Commands
MESE<N> {Module Event Status Enable)

System Menu Values

Menu Command Parameters Menu

MENU 0,0 System Configuration menu
MENU 0,1 Hard disk menu

MENU 0,2 Flexible disk menu

MENU 0,3 Utilities menu

MENU 0,4 Test menu

MENLU 0,5 Intermodule menu
tMENU?

The MENU query returns the current menu selection,

[:MENU] <modules, <menu=<NL:>

OUTPUT XXX;":MENUZ?"

Command

<N>

<enable_value>»

MESE<N> (Module Event Status Enable)

:MESE<N> <enable_value>

The MESE command sets the Module Event Status Enable register. This
register is the enable register for the MESR register. The <N= index
specifies the module, and the parameter specifies the enable value. For the
HP 165008 alone, the <N> index 0 through b refers to system and modules 1
through b respectively, With an HP 16501 A connected, the <N> index 6
through 10 refers to modules 6 through 10 respectively. Table 9-7 lists the
Module Event Status Enable register bits, bit weights, and what each bit
rmasks for the mainframe.

An integer 0 through 10

An integer from 0 through 255

Ve e e

Example

Query

Returned Format

Example

Table 9-7

Mainframe Commands
MESE<N> (Module Event Status Enable)

OUTPUT XXX; ":MESELl 3"

tMESE<N>7?

The query returns the current setting, Table 9-7 lists the Module Event
Status Enable register bits, bit weights, and what each bit masks for the
mainframe,

T:MESE<N>] <enable value»<NL>

QUTPUT XXX;":MESE_?"

HP 16500B Mainframe {Intermodule) Module Event Status Enable Register

Bit Position Bit Weight Enables

7 128 not used

6 84 notused

5 32 not used

4 16 not used

3 8 notused

2 4 not used

1 2 RNT - Intermodule Run Until Satisfied

0 1 MC - Intermodule Measurement Camplete

ORI T BRI

Mainframe Commands
MESR<N> (Module Event Status Register)

Query

Returned Format

<N>

<enable_value>

Example

Table 9-8

MESR<N> (Module Event Status Register)

:MESR<N>?

The MESR query returns the contents of the Module Event Status register.
The <N index specifies the module. For the HP 16500B alone, the <N=
index 0 through b refers to system and modules 1 through 5 respectively.
With an HP 165(11 A connected, the <N> index 6 through 10 refers to modules
6 through 10 respectively.

Refer to table 9-8 for information about the Module Event Status Register
bits and their bit weights.

[:MESR<N>] <enable_value><NL>

Aninteger 0 through 1.

An integer from 0 through 255

OUTPUT XXX;":MESRL?"

HP 165008 Mainframe Module Event Status Register

Bit Bit Weight Bit Name Condition
7 128 0 = not used
6 64 0 = not used
5 32 0 = not used
4 16 0 = not used
3 8 0 = not used
2 4 0 = not used
1 2 RNT 0 = Intermodule Run until not satisfied
1 = Intermodule Run until satisfied
0 1 MC 0 = Intermodule Measurement not satisfied

1 = Intermodute Measurement satisfied

Mainframe Commands
RMODe

Command

Example

Query

Returned Format

Example

RMODe

:RMODe {SINGle|REPetitive}

The RMODe command specifies the run mode for the selected module (or
Intermodule). If the selected module is in the intermodule configuration,
then the intermodule run mode will be set by this command.

After specifying the run mode, use the STARt command to start the acquisition.

QUTPUT XXX;":RMODE SINGLE"

: RMODe?

The query returns the current setting.
[:RMODe {SINGle!REPetitivei<NL>»

OUTPUT XXX; " :RMOD=?"

9-18

Mainframe Commands
RTC {Real-time Clock)

Command
<day>
<month>
<years
<hours>
<minute:s
<gecond:>

. Example
Query

Returned Format

Example

RTC (Real-time Clock)

:RTC <day>, <month>, <years>, <hcurs>, <minutes>, <second>

The real-time clock command allows you to set the real-time clock to the
current date and time.

integer from 1 to 31
integer from 1 to 12
integer from 1990 to 2089
integer from 0 to 23
integer from 0 to 59

integer from 0 to 58

This example sets the real-time clock for 1 January 1992, 20:00:00 (8 PM).

QUTPUT XXX; ":RTC 1,1,199%2,2¢,0,0"

:RTC?

The RTC query returns the real-time clock setting.

:RTC] <day>, <months>, <years>, <hours>, <minutes>, <second:>

QUTPUT XXX;":RTC?"

9-20

Mainframe Commands
SELect

Command

<module>

Example

Query

Returned Format

Example

SELect

:SELect <modulex>

The SELect command selects which module (or system) will have parser
control. The appropriate module (or system) rmust be selected before any
module (or system) specific commands can be sent. SELECT 0 selects
System, SELECT 1 through 5 selects modules A through E in an HP 16500B
only. SELECT 1 through 10 selects modules A through J when an HP 16601A
is connected. -1 and -2 selects software options 1 and 2 respectively. The
query returns the current module selection.

When a module is selected, the parser recognizes the module’s commands
and the Systerm/Intermodule commands. When SELECT 0 is used, only the
System/Intermodule commands are recognized by the parser. Figure 9-2
shows the command tree for the SELect command.

Selects module or systern. An integer from -2 through 5 for HI* 165008 only
or an integer from -2 through 10 with an P 16501A connected.

QUTPUT XXX;":SEL=ZCT 0T

:SELect?

The SELect? query returns the current module selection.

[:8ELecz] <rmodule><NL>

OUTPUT XXX;":SELECT?"

9-21

Mainframe Commands
SELect

Figure 9-2
:SELECT
2 {SELECTS SYSTEM/INTERMODULE)
1 (SELFCTS MODULE IN SLOT A3
| —2-—— (SELECTS MODULE IN 5LOT B)
3 (SELECTS MODULE IN SLOT C)
4 {SELECTS MODULE IN SLOT D)
5 {SELECTS MCDULE IN SLOT E?
- s (SEL.EC%S. MOD-U-LE .IN SJ;(-)T F3
Only available when 7 (SELECTS MODULE IN SLOT &)
an HP 16501A is
connected 8 (SELECTS MODULE IN SLOT H)
g (SFLFCTS MODULE TN SLOT 1)
18— (SELECTS MODULE IN SLOT J3
L (SELECTS OPTION 13
2 (SELECTS OPTION 2}

15500847

Select Command Tree

9-22

Mainframe Commands
SETColor

Command
<color>
<hue>
<Sat>
< lum:>
Example

SETColor

:SETColor {<color>, <hue>, <sat>, <lum>|DEFault}

The SETColor cornmand is used to change one of the color selections on the
CRT, or to return to the default screen colors. Four parameters are sent with
the command to change a color:

® Color Number (first parameter)
e Hue (second parameter)

e Saturation (third parameter)

® Luminosity (last parameter)

Aninteger from 1 to 7
An integer from 0 to 100
An integer from 0 to 100

An integer from 0 to 160

Color Number 0 cannot be changed.

QUTPUT XXX;":SETCOLOR 3,60,200,60"
OUTPUT XXX:":SETC DEFAULT"

9-23

Query

Returned Format

Mainframe Commands
STARt

:SETColor? <colors>

The SETColor query returns the hue, saturation, and luminosity values for a
specified color.
l:8=Z7Colior] <color>,<hues>, <sat>,<lum»<NL>

Example OUTPUT XXX;":SETCOLOR? 3"
STARt
Command :STARL

The STARt command starts the selected module (or Intermodule) running in
the specified run mode {(see RMODe). If the specified module is in the
Intermodule configuration, then the Intermodule run will be started.

The STARt command is an overlapped command. An overlapped command isa
command that allows execution of subsequent commands while the device

operations initiated by the overlapped cemmand are still in progress.

Example

OQUTPUT XXX; " :START"

9-24

Mainframe Commands
STOP

Command

STOP

:STOP

The STOP command stops the selected module (or Intermodule). If the
specified module is in the Intermodule configuration, then the Intermodule
run will be stopped.

The STOP command is an overlapped command. An overlapped command isa

command that allows execution of subsequent commands while the device
operations initiated by the overlapped command are still in progress.

Exampie

OUTPUT XXX;":5TOP"

9-25

Mainframe Commands
XWiNdow

Command

<display name>

. Examples

XWINdow

: XWINdow {QFF |0}
:XWINdow {ON|1}[,<display name:>]

The XWINdow command opens or closes a window on an X Window display
server, that is, a networked workstation or personal computer. The
XWINdow ON command opens a window. If no display name is specified, the
display name already stored in the HP 165008 X Window configuration menu
is used. If a display name is specified, that name is used. The specified
display name also is stored in non-volatile memory in the HP 16500B.

A string containing an Internet (IP) Address optionally followed by a display
and screen specifier. For example,
"12.3.47.,11"

or
"12.3.47.21:0.0"

To open a window, specifying and storing the display name:

QUTRPUT XXX; ":XWINDOW ON,*12.3.47.12""
To open a window, using the stored display name:
QUTPUT XXX; " : XWINDOW ON"

To close the X Window:
QUTPUT XXX;":XWINDOW QFF"

9-26

10

SYSTem Subsystem

10-1

Introduction

SYSTem subsystem commands control functions that are common to
the entire logic analysis system, including formatting query responses
and enabling reading and writing to the advisory line of the
instrument.

Refer to figure 10-1 and table 10-1 for the SY¥Stem Subsystem
commands syntax diagram. The SYSTem Subsystem commands are:
e DATA

e DSP

¢ ERRor

e HEADer

¢ LONGform

e PRINt

e SETup

10-2

SYSTem Subsystem

Figure 10-1

. stoag -
e - -
— - -'-'”i.—--/’-\”ln*» —-
saaze | W e)
- soace = STy —

e e | *Q/—J,—— - .
\\.-<E?N 1ii> -

\-—KDN
e S — L
——-ﬁ\j) q_T _/f

- - 7 I ™
— SN B -1e N et --—b*é[fs’em/)—- nm—

AP v

\'——b-q—bd 354\—0* ~gng-e *‘l—bo ’GL) '-'
"&}’:F

p N W
— Aji _— ——— -
i \-f_)»/m—»m = oonoT2 17 —_— =

\wOF asds | cee———e

. .
! :A*Ta\—-' ‘_"‘f\sa e g

R N Ry L, y
N T Sy B
- O

-

—-(SEM:}'*- 53322 ¢+ — 3.01< 0070 e

i
15200322

System Subsystem Commands Syntax Diagram

10-3

Table 10-1

SYSTem Subsystem

SYSTem Parameter Values

Parameter
block_data
string
pathname

Values

Data in |EEE 488.2 format

A string of up to 68 alphanumeric characters.

A string of up to 10 alphanumeric characters for LIF in the
following form:

NNNNNKNNNN

oF

A string of up to 64 alphanumeric characters for DOS in one of
the following forms:

NNNNNNNN . MNN when the file resides in the present working
directory

or

\NAME_DIR\FILENAME when the files does not reside in the
present working directory

10-4

SYSTem Subsystem
DATA

Command

Example

<block_data>

<block_length_
gpecifiers

<length>

<section>

<gection_

header>

<gection_data>

DATA

:SYSTem:DATA <block_data>

The DATA cormmand allows you to send and receive acquired data to and
from a controller in block form. This helps saving block data for:

Reloading the logic analysis system
e Processing data later in the logic analysis system

® Processing data in the controller.

The format and length of block data depends on the instruction being used
and the configuration of the instrument. This chapter describes briefly the
syntax of the Data command and query; however, the mainframe by itself
does not have acquired data. Therefore, the DATA command and query are
described in detail in the respective module Programmer’s Guides.
Because the capabilities of the DATA command and query vary for individual
modules, a complete chapter is dedicated to the DATA command and query
in each of the module Programmer’s Guides. The dedicated chapter is
called "DATA and SETup Commands."

QUTPUT XXX;":SYSTEM:DATA" <plock_data>

<bleck_length_specifiers<section>

#8<length>

The total length of all sections in byte format (must be represented with 8
digits)

<section_header»<secticn_datas>

16 bytes, described in the "Section Header Description” section of the
individual module Programmer’s Guides.

The format depends on the type of data

10-b

SYSTem Subsystem
DSP (Display)

Query :SYSTem:DATA?
The SYSTem:DATA query returns the block data. The data sent by the
SYSTerm:DATA query reflects the configuration of the a selected module
when the last acquisition was performed. Any changes made since then
through either front-panel operations or programming commands do not
affect the stored data. Since the mainframe does not acquire data, refer to
the appropriate module Programmer’s Guide for more details.

Returned Format [:8YSTem:DATA] <block_ datas<NL»

Example See the Programmer’s Guide for the selected module for an exampie.
DSP (Display)

Command :SYSTem:DSP <strings>
The DSP comumand writes the specified quoted string to a device-dependent
portion of the instrument display.

<string> A string of up to 68 alphanumeric characters
Example OUTPUT XXX:":SYSTEM:DSP 'The message goes nere’"

10-6

SYSTem Subsystem
ERRor

Query

Returned Formats

<error_number:>

<error_strings>

Examples

ERRor

: 8YSTem:ERRor? [NUMeric!S8TRing]

The ERRor query returns the cldest error from the error queue. The optional
parameter determines whether the error string should be returned along with
the error number. If no parameter is received, or if the parameter is
NUMeric, then only the error number is returned. If the value of the
parameter is STRing, then the error should be returned in the following form:

<error_numbers, <error_message (string)s

A complete list of error messages for the HP 16500B logic analysis system is
shown in chapter 7, "Error Messages." If no errors are present in the error
queue, a zero (No Error) is returned.

Numeric:

[:8¥STem: ERRor] < umb M

String:

[:8¥STem: ERRor] <error_numbers>, <error_string><NL»>

An integer

A string of alphanumeric characters

Numeric:

20 QUTPUT XXX;":8YSTEM:ERROR?"

20 ENTER ¥X¥;Numeric

String:

50 QUTPUT XXX;":SYST:ERR? STRING"
60 ENTER XXX;String$

10-7

SYSTem Subsystem
HEADer

Command

Example

Query

Returned Format

Example

HEADer

:8YSTem:HEADer {{ON|1}|{OFF|0}}

The HEADer command tells the instrument whether or not to output a
header for query responses. When HEADer is set to ON, query responses will
include the command header.

QUTPUT XXX;":S5YSTEM:HEADER ON"

:SYSTem:HEADer?

The HEADer query returns the current state of the HEADer command.

[:8YSTem:HEADer] {1:0Y<NL>

QUTPUT XXX;":SYSTEM:HEADER?"

Headers should be tumed off when returning values to numeric variables.

10-8

SYSTem Subsystem
LONGform

Command

Example

Query

Returned Format

Example

LONGform

:5YSTem: LONGform {{ON|1}|{OFF!0}}

The LONGform command sets the long form variable, which tells the
instrument how to format query responses. If the LONGform command is set
to OFF, command headers and alpha arguments are sent from the instrurnent
in the abbreviated form. If the LONGform command is set to ON, the whole
word will be output. This command has no affect on the input data messages
to the instrument. Headers and arguments may be input in either the long
form or short form regardless of how the LONGform command is set.

OUTPUT XXX;":SYSTEM:LONGFORM ON"

:8YS8Tem: LONGIform?

The query returns the status of the LONGform command.
[:8YSTem: LONGform) {1'0}<NL>

OUTPUT XXX; ":SYSTEM: LONGFORM? v .

10-9

SYSTem Subsystem
PRINt

Commands

l <pathname:>

<MmMsus>

<start:>
<ends>

PRINt

:8YSTem:PRINL ALL[,DISK, <pathnames>[, <msus>]]
:SYSTem:PRINt PARTial,<start>,<end>

[,DISK, <pathname>[,<msus>]]

: 8¥YSTem: PRINt SCReen|,DISK, <pathname> [,<msus>],
{BTIF|CTIF|PCX|EPS}]

The PRINt command initiates a print of the screen or listing buffer over the
current PRINTER commurnication interface to the printer or to a file on the
disk. The PRINT SCREEN option allows you to specify a graphics type. The
BTIF option formats the screen data in black-and-white TIF. The CTIF and
PCX options format the data in color TIF and color PCX respectively. EPS
specifies Encapsulated PostScript format.

If a file name extension is not specified in the command, the correct
extension will be appended to the file name automatically. The file name
extension is TTF for both BTIF and CTIF options and PCX is the extension for
the PCX option.

The PRINT PARTial command is valid in certain listing menus. It allows you
to specify a starting and ending state number so you can print a portion of
the listing to the printer or to a disk file.

A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN

or
A string of up to 64 alphanumeric characters for DOS in one of the following

forms:
NNNNNKNN . NNN when the file resides in the present working directory

or
\NAME_DIR\FILENAME when the files does not reside in the present

working directory

Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernall for the flexible disk drive,

An integer specifying a state number.

10-10

Capre e

Examples

Query

Example

SYSTem Subsystem
PRINt

This instruction prints the screen to the printer:

QUTPUT XX¥; ":SYSTEM:PRINT SCREEN"

This instruction prints all, for example the state listing, to a file with a file
name STATE:

OUGTPUT 707;":SYSTEM:PRINT ALL, DISK,’STATE'"

This instruction prints part of a listing file to disk:

CUTPUT XXX;":SYSTEM:PRINT PARTIAL,-9,30,DISX, ‘LISTING',INTO"
This instruction prints a black-and-white TIF file to the hard drive:

OUTPUT XXX;":SYSTEM:PRINT SCREEN, DTSK, ‘DPICTURE’, INTO, BTIF"

:SYSTem:PRINt? {SCReenl|ALL}

The PRINt query sends the screen or listing buffer data over the current
CONTROLLER communication interface to the controller.

The print query should NOT be sent in conjunction with any other command
or query on the same command line. The print query never returns a header.
Also, since response data from a print query may be sert directly to a printer
without modification, the data is not returned in block mode.

PRINT? ALL is only available in menus that have the "Print All" option available

on the front panel. For more information, refer to the HP 165008 Logic Analysis
System User's Reference.

OUTPUT 707;":SYSTEM:PRINT? SCREEN"

10-11

SYSTem Subsystem
SETup

Command

<block_data>

<block_length_

specifier>

<length>

<section>

<gection_

header>

«<section_data>

Example

Query

Returned Format

SETup

:8YStem: SETup <block data>

The :SYStem:SETup command configures the logic analysis system as
defined by the block data sent by the controller. This chapter describes
briefly the syntax of the Setup cormmand and query for the mainframe.
Because of the capabilities and importance of the Setup command and query
for individual modules, a complete chapter is dedicated to it in each of the
module Programmer’s Guides. The dedicated chapter is called "DATA and
SETup Cormmands."

<block_length_specifier»<sections>

#8<length>

The total length of all sections in byte format (must be represented with 8
digits)

<sectlon_header><section_data>

16 bytes, described in the "Section Header Description" section in chapter 26.

Format depends on the type of data

The total length of a section is 16 (for the section header} plus the length of
the section data. So when calculating the value for <length>, don't forget
to include the length of the section headers.

QUTPUT XXX USTNG "#,K";":SYSTEM:SETUP " <block_data>

:8YStem: SETup?

The SYStem:SETup query returns a block of data that contains the current
configuration to the controller.
{:8YStem: SETup] <block data=<NL>

10-12

SYSTem Subsystem
SETup

Example

See the Programmer’s Guide for the selected module for an example,

10-13

10-14

11

MMEMory Subsystem

Introduction

The MMEMory (mass memory) subsystem commands provide access
to both the hard and flexible disk drives. The HP 16500B Logic
Analysis System supports the DOS (Disk Operating System) format on
the hard drive and both DOS and LIF (Logical Informaticn Format) on
the flexible drive.

Refer to figure 11-1 and table 11-1 for the MMEMory Subsystem
commands syntax diagram. The MMEMory subsystem commands are:
¢ AUToload

e CATalog

¢ CD (change directory)

e COPY

¢ DOWNload

o IN[Tialize

s LOAD

o MKDir {make directory)

s MSI

s PACK

s PURGe

¢ PWD (present working directly)

o REName

¢ S5TORe

» [JPLecad

e VOLume

MMEMory Subsystem

<msus> refers to the mass storage unit specifier. INTernal0 specifies the hard
disk drive and INTernall specifies the flexible disk drive.

If you are not going to store information to the flexible configuration disk, or if
the flexible disk you are using contains information you need, itis advisable to
write protect your disk. This will protect the contents of the disk from
accidental damage due to incorrect commands being mistakenly sent.

MMEMory Subsystem

Figure 11-1

o | —_—

— - VI'“I “'lu ¥ Avmnm—b 7:3:-9 —PG:] B - -
. Q—L’ | i [S

e

LTI TN .
Ul AUToig0d b . —
! N ad :
Lo TaTaogs e - - - - —-T-'
[

K-"K\ " N E ‘/‘

~— gouLE — e M55 : -
—I-/'-"HY . _:JGC” .'—-"_.HG“I:‘ s :
N saace ane g P Y

f

—-— oo

%--—E_Dnazk;uu‘u '—W —_—

165005

MMEMory Subsystem Commands Syntax Diagram

t1-4

MMEMory Subsystem

Figure 11-1 (Continued)

Y i
.f N
—= T uce = -
- o
Ll i |——-—f\ - Y
R N By

N ENETN B -

—{ans) T e o e —

“‘-b'/_\ -l oN-g)
R NoT A

o R

i

P . L
\bc_;‘ C e sas \i—i)—v e]J

. PV
—~ M5 -
T

\ — -
- S33Ce = 503 }_‘

Fore o _
N - -
: --C/UA;K\, e —— e —

- 4
1] \,.Z’ —-E‘_/ 15590515

MMEMory Subsystem Commands Syntax Diagram (Continued)

MMEMory Subsystem

Figure 11-1{Continued)

Y i
—)= 0e . -—-—7"' u';7—> '13::_-—- - = ———————— - [
\7;1_ 39U 2 _ T
‘-bﬂ#- RENE] }—
R
P
— o) e . —— e — — -
I i
: — '
- naza RENE -
Riw:‘e\% 53308 - e g1 ——————————— e — - —,
Lo :
Sl b= —els
N '
L

7

— @ 4-'_-1.9;# a1z '7'77 —

—8= 5oOCE e R

\JTaRe o)
R G T £ I
AN =
PR
e - J g
=
— - —_— . P ——Y
— - Uea;'u::r': }7* o —l—-‘
. ‘\b-'\i.jl - T0dug |'/
:—D-\iii‘_;oad’ /'r SR soaLE e naTe !* —7, Iy -
\’&'_) LW —
sl T-iu\,
\.'\du'_d ied 7 ‘
\‘b-; soooE o M omsas — 16509515

MMEMory Subsystem Commands Syntax Diagram (Continued)

Table 11-1

MMEMory Subsystem

MMEMory Parameter Values

Parameter
auto_file

msus

name

path_name

directory_name

description

type
block_data
module

ia_name

new_name

Values

A string of up to 10 alphanumeric characters for LIF in the
following form: "NNNNNNNNNN'

or

A string of up to 12 alphanumeric characters for DOS in the
following form: "NNNNNNNN.NNN

Mass Storage Unit specifier. TNTexrnal0 for the hard disk
drive and TXTernall for the flexible disk drive.

A string of up to 10 alphanumeric characters for LIFin the
following form: "NNNNNNNNNN"

or

A string of up to 12 alphanumeric characters for DOS in the
following form: "NNNNNNNN.NNN"

A string of up to 64 characters for DOS disks endingin a file
name. Separators can be the slash (/) or the backslash {\)
character.

A string of up to 64 characters for DOS disks endingina
directory name. Separators can be the slash {/) or the
backslash {\) character. The string of two periads {..)
represents the parent of the present working directory.

A string of up to 32 alphanumeric characters.

An integer, refer to table 11-2,

Data in |EEE 488.2 format.

An integer, —2 through 5 for the HP 165008 alone. 2 through
10 with the HP 16501A connected.

A string of up to 10 alphanumeric characters for LIF in the
following form: "NNNNNNNNNN"

or

A string of up to 12 alphanumeric characters for DOS in the
following form: “NNNNNNNN.NNN"

A string of up to 10 alphanumeric characters for LIF in the
following form: “NNNNNNNNNN"

or

A string of up to 12 alphanumeric characters for DOS in the
following form: "NNNNNNNN.NNN"

MMEMory Subsystem
AUToload

Command

<auto_file>

<msus>

Examples

Iﬂuery

Returned Format

Example

AUToload

:MMEMory:AUTolocad {{OFF|0}|{<auto file>»}} [, <msus>]

The AUToload comrmand controls the autoload feature which designates a set
of configuration files to be loaded automatically the next time the instrument
is turned on. The OFF parameter (or 0} disables the autoload feature. A
string parameter may be specified instead to represent the desired autoload
file. Ifthe file is on the current drive, the autoload feature is enabled to the
specified file. The configuration files specified must reside in the root
directory of the current drive.

A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN . NNIN

Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernall for the flexible disk drive.

QUTPUT XXX;":MMEMORY:AUTOLOAD OFF"
QUTPUT EXX;":MMEMORY:AUTOLOAD 'FILEl1_A'""
OUTPUT XXX; " :MMEMORY:AUTOLOAD 'FILEZ ‘, ZNTERNALO"

:MMEMory :AUToload?

The AUToload query returns 0 if the autoload feature is disabled. If the
autoload feature is enabled, the query returns a string parameter that
specifies the current autoload file.

[:MMEMory:AUToload] {0.<auto_filex},<msus><NL>

OQUTPUT XXX;":MMEMORY:AUTOLOAD?"

MMEMory Subsystem
CATalog

Query

<MSUS>

Returned Format

<pblock_data>

Example 1

Example 2

CATalog

:MMEMory: CATalog? [[All,] [<msus>]]

The CATalog query returns the directory of the disk in one of two block data
formats. The directory consists of a 51 character string for each file on the
disk when the ALL option is not used. Each file entry is formatted as follows:

"NNNNNNNNNE TTTTTTT FFFFFFFFFFFFFFPFFFFFPFFFFEFEEERE"

where N is the filename, T is the file type (see table 11-2), and F is the file
description.

The optional parameter ALL returns the directory of the diskina
70-character string as follows:

o NNNNNNNNNNNE TTTTTTT FEFFFFPESFFFIFFFIPSFFTFFFFFIEFEET
DDMMMYY HH:MM:SS"

where N is the filename, T is the file type (see table 11-2), F is the file
description, and, D, M, Y, and HH:MM:SS are the date, month, year, and time
respectively in 24-hour format.

Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernall for the flexible disk drive.
[:MMEZMory:CATalog] <block_catas

ASCII block containing <filename> <file_type:>
<file_description:>

This example is for sending the CATALOG? ALL query:

QUTPJT 707;":MMEMORY:CATALOG? ALL"

This example is for sending the CATALOG? query without the ALL option.
Keep in mind if you do not use the ALL option with a DOS disk, each
filename entry will be truncated at 51 characters:

OUTBUT 707;":MMEMORY: CATALOG?"

MMEMory Subsystem
CD (Change Directory)

CD (Change Directory)

Command :MMEMory :CD <directory_name> [,<msus>]

The CD command allows you to change the current working directory on the
hard disk or a DOS flexible disk. The command allows you to send path
names of up to 64 characters for DOS format. Separators can be either the
slash (/) or backslash (\) character. Both the slash and backslask characters
are equivalent and are used as directory separators. The string containing
double periods (..} represents the parent of the directory.

<directory_ String of up to 64 characters for DOS disks ending in the new directory name
name:

Examples QUTPUT 707;":MMEMory:CD ‘CHEILD DIR'"
QUTPUT 707; " :MMZMoxy:CD ., "
QUTPUT 707; " :MMEMory:CD *\SYSTEM\SOURCE DIR\DIR’, INTernalQ"

The slash (/) character in DOS path names will be automatically translated to
the backslash character (\) on the disk; therefore, any fiexible DOS disk used in

the HP 165008 will be compatible in DOS computers.

11-10

Command

<rame>

<IleW_name:>

<MSUS>

MMEMory Subsystem
COPY

COPY

:MMEMory : COPY <name> [, <msus>], <new_name> [,<msus>)

The COPY command copies one file to a new file or an entire disk’s contents
to another disk. The two <name:> parameters are the filenames. The first
pair of parameters specifies the source file which must reside in the present
working directory. The second pair specifies the destination file. An error is
generated if the source file doesn’t exist, or if the destination file already
exists.

A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN

or

A string of up to 12 alphanumeric characters for DOS in the following form:
NNNNNMNN . NNN when the file resides in the present working directory

or

\NAME DTR\FILENAME when the files does not reside in the present
working directory

A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 64 alphanumeric characters for DOS in one of the following

forms:
NNNNNNNN . NNN when the file resides in the present working directory

or
\NAME_DIR\FILENAME when the files does not reside in the present

working directory

Mass Storage Unit specifier. INTernal? for the hard disk drive and
INTernall for the flexible disk drive.

11-11

MMEMory Subsystem
DOWNIload

Examples To copy the contents of "FILEL" to "FILE2:
QUTPUT XXX; " :MMEMORY:COPY 'FILEL’, 'FILE2'"
To copy the contents of "FILE1" on the hard disk to "FILE2" on the flexible
disk:
OUTPUT XXX;":MMEMORY:COPY ‘FILEL’INTERNALO, 'FILEZ', ZNTERNALL"
DOWNIload
Command :MMEMory : DOWNload <name»[,<msus>],<descriptions,
<type>, <block_data>
The DOWNIload command downloads a file to the mass storage device. The
<name: parameter specifies the filename, the «descriptions parameter
specifies the file description, and the <block_datas contains the contents
of the file to be downloaded.
Table 11-2 lists the file types for the <types parameter.
<name> A string of up to 10 alphanumeric characters for LIF in the following form:
NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:
NNNNNNNN. NNN when the file resides in the present working directory
ar
\NAME_DIR\FILENAME when the files does not reside in the present
working directory
<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernall for the flexible disk drive.
<description> A string of up to 32 alphanumeric characters

11-12

MMEMory Subsystem

DOWNIoad
<type> An integer (see table 11-2)
<block data> Contents of file in block data format

Example

OUTDBUT XXX;":MMEMORY ; DOWNLOAD *SETUP *, INTERWALQ, 'FILE CREATED FROM SETJP

QUERY',-16127,#800000643..."

Table 11-2 File Types
File File Type
HP 165008 System Software —15603
HP 16500B Option Scftware -15602
HP 16500A or HP 16500B System Configuration -16127
Autoload File -1561%
Inverse Assembler -15614
DOS file { from Print to Disk) -5813
HP 16510A/B Configuration -16097
HP 165118 Configuration —-16098
HP 16515A Configuration -16127
HP 16516A Configuration 16126
HP 16520A Configuration -16107
HP 16521A Configuration -16106
HP 16530A Configuration -16117
HP 16531A Configuration —16116
HP 16532A Configuration -16115
HP 16540A Configuration —16088
HP 16541A Configuration -16087
HP 16542A Master Card Configuration 16086
HP 168542A Expansion Card Configuration —16085
HP 16550A Master Card Configuration —16096
HP 16550A Expansion Card Configuration —16095

11-13

MMEMory Subsystem
INITialize

Command

<MsusS>

Examples

INITialize
: MMEMory: INIT1allze [{LIF|DOS}{,<msus>] |

The INITialize command formats the disk in DOS (Disk Operating System) on
the hard drive or either DOS or LIF (Logical Information Format) on the
flexible drive. If no format is specified, then the initialize cornmand will
format the disk in the DOS format, LIF format is niot allowed on the hard
drive.

Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernall for the flexible disk drive.

OUTPUT XXX; " :MMEMORY:INITIALIZE 208" ~
OUTPUT XXX;":MMEMORY:INITIALIZE LIF, INTERNALL1"
QUTPUT XXX;":MMEMORY:INITIALIZE DOS, INTERNALO"

Once executed, the initialize command formats the specified disk, permanently
erasing all existing infermation from the disk. After that, there is no wayto

retrieve the original information.

11-14

MMEMory Subsystem
LOAD [:CONFig]

Command

<name>

<MsSuUsS>

<modul e>

Examples

LOAD [:CONFig]

:MMEMory : LOAD [:CONfig] <name>[, <msus>] [,<module>]

The LOAD command loads a configuration file from the disk into the
modules, software options, or the system. The <name> parameter specifies
the filename from the disk. The optional <modulie> parameter specifies
which module(s) to load the file into. The accepted values are -2 through
10. Not specifying the <module: parameter is equivalent to performing a
LOAD ALL' from the front panel which loads the appropriate file for both the
systern and the modules, and any software option.

A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN

or

A string of up to 12 alphanumeric characters for DOS in the following form:
NNNNNNNN.NNN when the file resides in the present working directory

or
\NAME_DIR\FILENAME when the files does not reside in the present

working directory

Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernall for the flexible disk drive.

An integer, -2 through & for the HP 165008 alone. -2 through 10 with the HP
16501 A connected.

QUTPUT XXX;":MMEMORY:LOAD:CONFIG 'FILE "
OUTPUT XXX;":MMEMORY:LOAD ‘FILE ',0"
QUTPUT XXX; " :MMEM:_O0AD:CONFIG ‘FILE A’ INTERNALO, 1"

1i-15

MMEMory Subsystem
LOAD :IASSembler

Command

<IlA_name:>

<MSUsS>

<modules

Examples

LOAD :IASSembler

:MMEMory : LOAD: IASSembler <IA name>[,<msus>], {112}
[,<modulex>]

This variation of the LOAD command allows inverse assembler files to be
loaded into a module that performs state aralysis, The <IA_name>
parameter specifies the inverse assembler filename from the desired
<msus>. The parameter after the optional <msus> specifies which machine
to load the inverse assembler into. For example, a 1 following <msus>
spectifies that the inverse assembler files will be loaded into MACHINE 1 of
the specified module.

The optional <module> parameter is used to specify which slot the state
analyzer is in. If this parameter is not specified, the state analyzer in the
currently selected module will be loaded with the inverse assembler file.

A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN

or

A string of up to 12 alphanumeric characters for DOS in the following form:
NNNNNNNN . NNN when the file resides in the present working directory

or
\NAME_DIR\FILENAME when the files does not reside in the present

working directory

Mass Storage Unit specifier. TNTernal(for the hard disk drive and
INTernall for the flexible disk drive.

An mnteger, 1 through & for the HP 165008 alone, 1 through 10 with an HP
16501 A connected.

OUTPUT XXX; ":MMEMORY:LOAD:TIASSEM3LER 'I68020 Ip*,1*
OUTPUT XXX;":MMEM:LOAD:IASS "I68020 IP’,INTERNALQ,Z,2"

11-16

TR

MMEMory Subsystem
MKDir {Make Directory}

Command
<directory
_name>
<MESUS>

Examples

MKDir (Make Directory)

:MMEMory :MKDir <directory_name> [,<msus:>]

The MKDir command allows you to make a directory on the hard drive and a
DOS disk in the flexible drive. Directories cannot be made on LIF disks.
Make directory will make a directory under the present working directory on
the current drive if the optional path is not specified. Separators can be
either the slash (/) or backslash (\) character. Both the siash and backslash
characters are equivalent and are used as directory separators. The string
containing two periods (..) represents the parent of the present working
directory.

String of up to 64 characters for DOS disks ending in the new directory name.

Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernall for the flexible disk drive.

QUTPUT XXX; " :MMEMORY:MKDIR 'NEW.DIR""
OUTPUT XXX;":MMEM:MKD ‘\SYSTZM\NEW.DIR',6INTO "

The stash {/) character in DOS path names will be automatically translated to
the backslash character (\) on the disk; therefore, any flexible DOS disk used in

the HP 165008 will be compatible in DOS computers.

11-17

Cepre e

MMEMory Subsystem
MSI {Mass Storage Is)

Command

<msSus>

Examples

Query

Returned Format

Example

MSI (Mass Storage Is)

(MMEMory :MSI [<msuss>]

The MSI command selects a default mass storage device. INTernal(} selects
the hard disk drive and INTernall selects the flexible disk drive. Once the
MSI is selected it remains the default drive until another MSI command is
sent to the system,

Mass Storage Unit specifier. TNTernal for the hard disk drive and
INTernall for the flexible disk drive.

OUTPUT XXX; " :MMEMORY:MSI"
QUTPUT XXX, ":MMEM:MSI INTERNALO"

:MMEMory :MSI7?

The MSI? query returns the current MSI setting.
[:MMEMory :MSTI] <msus><NL>

QUTPUT XXX; ":MMEMORY:MSI?"

11-18

MMEMary Subsystem
PACK

Command

<MsSUS>

Examples

PACK

:MMEMory : PACK [<msus>]

The PACK command packs the files on the LIF disk the disk in the drive. Ifa
DOS disk is in the drive when the PACK cormard is sent, no action is taken.

Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernall for the flexible disk drive.

QUTDUT XXX; " :MMEMORY: PACX"
OUTPUT XXX; ":MMEM:PACK INTERNALD"

11-19

T

MMEMory Subsystem
PURGe

Command

<name:>

<msSus>

Examples

PURGe

:MMEMory : PURGe <name> [, <msus>]

The PURGe command deletes files and directories from the disk in the
specified drive. The PURge comumand only purges directories when the
directory is empty. If the PURge command is sent with a directory name and
the directory contains files, the message "Directory contains files" is
displayed and the command is ignored. The <name> parameter specifies the
file name to be deleted.

A string of up to 10 alphanumeric characters for LIF in the following formu:

NNNNNNINNNN

or

A string of up to 12 alphanumeric characters for DOS in the following form:
NNNNNNNN . NNN when the file resides in the present working directory

or
\NAME_DIR\FILENAME when the files dees not reside in the present

working directory

Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernall for the flexible disk drive.

This instuction purges the file named "FILE1" from the currently specified
drive:

OUTPUT X¥¥; " :M¥MEMORY:PURGE ‘FILEL""

This instruction purges the file named "FILE1" from the hard drive:

QUTPUT XXX; ":MMEMORY:PURGE 'FILE]‘, INTERNALO"

This instuction purges the directory named "NEWDIR" from the hard drive:
OUTPUT XXX;":MMEMORY:PURGE ‘NEWDIR', INTERKALQ"

Once executed, the purge command permanently erases all the existing
information about the specified file. After that, there is no way to retrieve the

original information,

11-20

MMEMory Subsystem
PWD {Present Working Directory)

Query

Returned Format

<dlirectory:>

<msus>

Examples

PWD (Present Working Directory)

:MMEMory: PWD? [<msus>]

The PWD query returns the present working directory for the specified drive.
If the «<msus> option is not sent, the present working directory will be
returned for the current drive.

[:MMEMory : PW2] <directory>, <msus><NL:>

String of up to 64 characters with the backslash (1) as separator for DOS and
LIF disks.

Mass Storage Unit specifier. INTernal?® for the hard disk drive and
INTernall for the flexible disk drive.

QUTPUT XXX; " :MMEMORY :PWD?"

QUTPUT ¥¥¥; " :MMEMORY:PWD? INTERNALL'

(L W NI INAL

11-21

MMEMory Subsystem
REName

REName

Command :MMEMory : REName <names> [, <msus>],<new_name:>

The REName command renames a file on the disk in the drive. The <name>
parameter specifies the filename to be changed and the <new_name>
parameter specifies the new filename.,

You cannot rename a file to an already existing filename.

<name> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN

or

A string of up to 12 alphanumeric characters for DOS in the following form:
NNNNNNNN.NNN when the file resides in the present working directory

or

\NAME_DIR\FILENAME when the files does riot reside in the present
working directory

<msus> Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernall for the flexible disk drive.

NNNNNNNNKN

or

A string of up to 12 alphanumeric characters for DOS in the following form:
NNNNNNNN , NNN when the file resides in the present working directory

or

\NAME_DIR\FILENAME when the files does not reside in the present
working directory

. <new name> A string of up to 10 alphanumeric characters for LIF in the following form:

Examples QUTPUT XXX; " :MMEMORY:RENAME ‘QLDFILZ’, "NEWFILE"'"
QUTPUT XXX;":MMEM:REN 'OLDFZLE’ [, INTZRNALLI , ‘NEWFILE’"

11-22

MMEMory Subsystem
STORe {:CONFig]

Command

<rame>

<MSUusS >

<description>

<modules>

Examples

STORe [:CONFig]

:MMEMory : STORe [:CONfigl<namex>[, <msus>],
<descripticons [, <modulex>]

The STORe command stores module or system configurations ento a disk.
The I:CONFig] specifier is optional and has no effect on the command. The
<name> parameter specifies the file on the disk. The <description>
parameter describes the contents of the file. The optional <module>
parameter allows you to store the configuration for either the system or the
modules. 0 refers to the system. 1 through 5 refers to the modules in the
mainframe alone and 1 through 10 refers to the mainframe with an expansion
frame connected.

If the optional <module> parameter is not specified, the configurations for
both the system and logic analyzer are stored.

A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN

or

A string of up to 12 alphanumeric characters for DOS in the following forro:
NNNNNNNN. NNN when the file resides in the present working directory

or

\NAME_DIR\FILENAME when the files does not reside in the present

working directory

Mass Storage Unit specifier. INTernald for the hard disk drive and
TNTernall for the flexible disk drive.

A string of up to 32 alphanumeric characters

An integer, 1 through 5 for the HP 16500B alone. 1 through 10 with an
HP 16501 A connected.

OUTPYUT XX¥:":MMEM:STOR ‘DEFAULTS’, 'SETUPS FOR ALL MODULES'"
OUTPUT XX¥;":MMEMORY : STORE:COKFIG *STATEDATA', INTERNALO,
PANALYZER 1 CONFICG',L"

11-23

MMEMory Subsystem
UPLoad

The appropriate module designator *_X"is added to all files when they are
stored. "X' refers to either an __ (double underscore} for the system or an _(A

through E) for an HP 165008 aione or an _{A through J) with an HP 16501A
connected.

Query

<name>

<nsus>

Returned Format

UPLoad

:MMEMory : UPLoad? <name> [, <msus:>]

The UPLoad query upleads a file. The <name:> parameter specifies the file to
be uploaded from the disk. The contents of the file are sent out of the
instrument in block data form.

This command should only be used for HP 16550A configuration files.

A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN

or

A string of up to 12 alphanumeric characters for DOS in the following form:
NINNNNNNN . NNN when the file resides in the present working directory

or

YW NAME_DIR\FILENAME when the files does not reside in the present
working directory

Mass Storage Unit specifier. INTernalC for the hard disk drive and
INTernall for the flexible disk drive.
[:MMEMory :JPLoad] <block_data><NL>

11-24

MMEMory Subsystem
UPLoad

Example

10 DIM Block&[32000! 1allocate enough memory for block cata
20 DIM Specifier$SiZi

30 QUTPUT XX;":=Z0I ON"

40 QUTPUT XXX;':SYSTEM HEAD orr"

50 QUTPUT XXX;" . MMEMORY : JPLOAD? 'FILEL'" tsend upload guery
60 ENTER XXX USING "#,2A";Speciflers lread 1n %8

70 ENTER XXX USING "4 8D":Length !read in block length

80 ENTER XXX USIKG voK";Block$S tread in file

90 END

11-256

MMEMoeory Subsystem
VOLume

Query

<msus>

Returned Format

Example

VOLume

:MMEMory : VOLume? [<msus>]

The VOLume query returns the volume type of the disk. The volume types
are DOS or LIF. Question marks (???} are returned if there is no disk, if the
disk is not formatted, or if a disk has a format other than DOS or LIF.

Mass Storage Unit specifier. INTernal0 for the hard disk drive and
INTernall for the flexible disk drive.

[:MMEMoxy:VOLume] {D0OS |LIF | 2?7 }<NL>

QUTPUT XXX;" :MMEMORY:VOLUME?"

11-26

12

INTermodule Subsystem

12-1

Introduction

The INTermodule subsystem commands specify intermodule arming
from the rear-panel input BNC (ARMIN) or to the rear-panel output
BNC (ARMOUT). Refer to figure 12-1 and table 12-1 for the
INTermoedule Subsystem commands syntax diagram. The
INTermodule commands are:

e DELete

e HTIMe

e INPort

e INSert

¢ PORTEDGE

s PORTLEY

* SKEW

¢ TREE

e TTIMe

12-2

INTermodule Subsystem

Figure 12-1
e

AL Y"

Ty e R e e B
! — O - ‘

\‘"'-“-IIU:_}:J,E' -’}
)

T e T .
sy e e oo onse | — w0 —om{sr e
e

Ny S o G g B

gl BT] it Y
e I0TTIO00 e suule RN _— - -
VIR T e R T

—w{ S5ATFY }—m soace l_,_@—‘——— -
—h@—l— ;
Mo e v = ‘

. .f’n’q?_:\,‘? - - e
(Fom.v)

—JE@—D asex }—b 53322 ——® s=2inag - -
. - R . - .
5"'/5“-‘”\‘ — ex ? --Cl/i e ——————————————————=
. b«/W:: [gLz | e ST --'fﬁ\ ”*7—;‘35)

RS suaLe IRENT] W fliele N

s —

~ — — — - -
Lﬁ i L = = |

\—b\l_./ mod. —b\‘)—p adez b

p - — -

18502521

Intermadule Subsystem Commands Syntax Diagram

12-3

{NTermodule Subsystem
ANTermodule

Table 12-1 INTermodule Parameter Values
Parameter Value
module An integer, 1 through 5 for HP 16500B atone. 1 through 10
with the HP 16501A connected.
user_lev A real number from —4.0 to +5.0 volts in 0.02 volt incements
index An integer, 1 through 5 for HP 165008 alone. 1 through 10
with the HP 16501A connected.
setting A numeric, — 1.0 to 1.0 in seconds.
:INTermodule
Selector : INTermodule
The INTermodule selecior specifies INTermodule as the subsystem the
commands or queries following will refer to. Because the INTermodule
command is a root level command, it wili normally appear as the first element
of a compound header.
Example OUTPUT XXX;":INTERMODULEZ:HTIME?"

12-4

INTermodule Subsystem
DELete

Command

<modul e

Example

DELete

:DELete {ALL|OQUT|<module>}

The DELete command is used to delete a module, PORT OUT, or an entire
intermodule tree. The <module> parameter sent with the delete command
refers to the slot location of the medule,

An integer, 1 through 5 for [P 165008 alone. 1 through 10 with the HP
16501 A connected.

OUTPUT X¥X;":INTERMODULE:DELETE ALL"
QUTPUT XXX;":INTERMODULZ:DELETEZ 1"

12-6

INTermodule Subsystem
HTIMe

Query

Returned Format

<value_l>
<value_2>
<value_3>
<value_4>
<value 5>
<value_6>
<value_7>
<value_8>
<value_9>

<value_10>

HTIMe

:HTIMe?

The HTIMe query returns a value representing the internal hardware skew in
the Intermodule configuration. If there is no internai skew, 9.9E37 is
returned.

The internal hardware skew is only a display adjustment for time-correlated
waveforms. The value returned is the average propagation delay of the trigger
lines through the intermodute bus circuitry. These values are for reference only

because the values returned by TTIMe include the internal hardware skew
represented by HTIMe.

[:INTermodule:ETIMe] <value_ls,<value_2>,<value_3>,<value_4>,
<value S>,<vaiue_é>,<value_7>,<value_B>,<value_9>,<value >0><NL

g

Skew for module in slot A (real number)
Skew for module in slot B (real number)
Skew for module in slot C (real number}
Skew for module in slot D (real number)
Skew for module in slot E {real number)
Skew for module in slot F' (real number)
Skew for module in slot G (real number)
Skew for module in slot H (real number)
Skew for module in stot I (real number)

Skew for module in slot J (real number)

12-6

Capre e

INTermodule Subsystem
INPort

Example CUTPUT XXX; " : INTERMODULE: HTIME? "
INPort

Command :INPort {{CNI1}|{QFFIC}}
The INPort command causes intermodule acquisitions to be armed from the
Input port.

Example OUTPUT XXX; " :INTEIMODULE: INPORT ON'

Query : INPort?

Returned Format

Example

The INPort query retians the current setting,
[:INTermodule: INPort] {110} <NI>

QUTPUT XXX;":INTERMODULE:IKPORT?"

12-7

INTermodule Subsystem
INSert

Command

<module>

Examples

INSert

: INSert {<module> |QUT}, {GROUP |<module>}

The INSert command adds PORT OUT to the Intermodule configuration. The
first parameter selects the module or PORT OUT to be added to the
intermodule configuration, and the second parameter tells the instrument
where the module or PORT OUT will be located. 1 through 5 corresponds to
the slot location of the modules A through E for the HP 16500B alone and 1
through 10 corresponds to slot loction of modules A through J when an HP
16501A is connected.

Arn Integer, I through 5 for HP 165008 alone. 1 through 10 with the HP
16501 A connected.

CUTPUT XXX;":INTERMODULE:INSERT 1,CGRCUP"

OUTDUT XX¥:": INTERMODULE: m 2 anaTIoo
GULlPULY AAAL; T TAINIGRMUJULE D LNSERLD 2, GRUUE

QUTPUT XXX;":INTERMCODULE:INSERT 3,2;INSERT OUT,Z2"

TROTT

The following figure shows the result of the example output cornmands:

Group Run

C ouT

12-8

INTermodule Subsystem
PORTEDGE

Command

<edge_spec>

Example

Query

Returned Format

Example

PORTEDGE

: PORTEDGE <edge_spec>

The PORTEDGE command sets the port input BNC to respond to either a
rising edge of falling edge for a trigger from an external source. The
threshold level of the input signal is set by the PORTLEV command.

A 1 or ON for rising edge or a 0 or OFF for falling edge.

OUTPUT 707;":INTERMODULZ: PORTEDGE 1°

: PORTEDGE?

The PORTEDGE query returns the current edge setting.
i INTermodule:PORTEDGE] {1!0}<NL>

OUTPUT XX¥;":INTERMODULE: PORTEDCE?"

12-9

INTermodule Subsystem
PORTLEV

Command

<user_levs>

Example

Query

Returned Format

Example

PORTLEV

:PORTLEV {TTLIECL |<user_lev>}

The PORTLEV (port level) command sets the threshold level at which the
input BNC responds and produces an intermodule trigger. The preset levels
are TTL and ECL. The user defined level is -4.0 volts to +5.0 volts.

A real number from -4.0 to + 5.0 volts in 0.02 voit increments.

This statement sets the BNC threshold to ECL

CQUTPUT XXX;":INTERMODULE: PORTLZV ECL"

This staterment sets the BNC threshold to -2.3 volts
OUTPUT XXX; ":INTERMODULE:PORTLEV -2.3"

: INTermedule: PORTLEV?

The PORTIlev query returns the current BNC threshold setting.
[INTermodule: PORTLEV. {TTL|ECL|<user_levs><NL>

OUTPUT XXX; " :INTERMODULE:PORTLEV?"

12-10

iNTermodule Subsystem
SKEW<N>

Command
<N>
<settings>
Example
Query

Returned Format

Example

SKEW<N>

: SKEW<N> <setting>

The SKEW command sets the skew value for a module. The <N index value
is the module number (1 through 5 corresponds to the slot location of the
modules A through E for the HP 165008 alone and 1 through 10 corresponds
to siot loction of modules A through J when an HP 16501A is connected).
The <setting> parameter is the skew setting (- 1.0 to 1.0) in seconds.

An integer, 1 through 5 for HP 165008 alone. 1 through 10 with the HP
16501 A connected.

A real number from -1.0 to 1.0 seconds

QUTPUT XXX; ": INTERMODULE: SKEWZ 3.0E-9°

: SKEW<N=>?

The query returns the user defined skew setting.
[INTermodul e: SKEW<N>] <seTting><NL>

QUTPUT XXX:":INTERMODULL:SKEWL?"

12-11

INTermoduie Subsystem
TREE

Command

<modules

Example

TREE

:TREE <modules, <mcdules, <modules, <module>,
<modules, <modules>

The TREE command allows an intermodule setup to be specified in one
command. The first parameter is the intermodule arm value for module A
(logic analyzer). The second parameter corresponds to the infermodule arm
value for PORT OUT. A -1 means the module is not in the intermodule tree,
a 0 value means the module is armed from the Intermodule run button
(Group run), and a positive value indicates the module is being armed by
another module with the slot location 1 to 10. 1 through 10 corresponds to
slots A through J.

An integer, -1 through for an HP 165008 alone. —1 through 10 with the HP
16501 A connected.

QUTPUT XXX;":INTERMODULE:TREE 0,0,2,-1,-1,2"

The following figure shows the result of the example cutput commands:

Group Run

C ouT

12-12

Query

Returned Format

INTermodule Subsystem
TTIMe

: TREE?

The TREE? query returns a string that represents the intermodule tree. A -1
means the module is not in the intermodule tree, a 0 value means the module
is armed from the Intermodule run button (Group run), and a positive value
indicates the module is being armed by another module with the slot location
110 10. 1 through 10 corresponds to the slots A through J.

[INTermodule: TREE] <modu1e>,<module>,<module>,<module>,
<modale=<NL>

Example OUTPUT XXX;":INTERMODULE:TREE?"
TTIMe
Query :TTIMe?

The TTIMe query returns five values (HP 165008 alone) representing the
absolute intermodule trigger time for all of the modules in the Intermodule
configuration. When an HP 16501A is connected, the TTIMe query returns
10 values. The first value is the trigger time for the module in slot A, the
second value is for the module in slot B, the third value is for slot C, etc.

The value 9.9E37 is returned whern:
e No module is installed in the corresponding slot,
e The module in the corresponding slot is not time correlated; or

e A time correlatable module did not trigger.

The trigger times returned by this command have already been offset by the

INTermodule:SKEW values and internal hardware skews (INTermodule:HTIMe).

12-13

Returned Format

<value
<value
<value
<value
<value
<value
<value
<value

<value

1=

2>

3>

4>

5>

6

V>

8=

9=

<valuel()

Example

INTermodule Subsystem
TTIMe

[:INTermoau_e:TTIMe] <value 1»,<value 2>, <value 3>,
<value 4>,<value 5»,<value 6>,<value 7>,<value 8>,
<value 9>, <va_te 10><NL>

Trigger tirme for module in slot A (real number)
Trigger time for module in slot B (real number)
Trigger time for module in slot C (real number)
Trigger time for module in slot D (real number)
Trigger time for module in slot E (real number)
Trigger time for module in slot F (real number)
Trigger time for module in slot G (real number)
Trigger tirme for module in slot H (real number)
Trigger time for module in slot I (real number)

Trigger time for module in slot J (real number)

OUTPUT XXX;":INTERMODULZ:TTIME?"

12-14

Part 3

13 Programming Examples 13-1

Programming Examples

13

Programming Examples

13-1

Introduction

This chapter contains short, usable, and tested program examples
that cover the most asked for examples. The examples are written in
HP BASIC 6.2.

Transferring the mainframe configuration between the mainframe
and the controller

Checking for intermodule measurement cornpletion
Sending queries to the mainframe

Getting ASCII data with PRINt? All query

Reading a disk catalog

Printing to the disk using PRINT? ALL

13-2

Programming Examples
Transferring the Mainframe Configuration

Transferring the Mainframe Configuration

This program uses the §YSTem: SETup? gquery to transfer the configuration
of the mainframe to your controller. This program also uses the

gYSTem: SETup command to transfer a mainframe configuration from the
controller back to the mainframe. The configuration data will set up the
mainframe according to the data. It is useful for getting configurations for
setting up the mainframe by the controller. This command and query differs
fromthe SYSTem:DATA? command and query because it only transfers the
configuration and not the acquired data. Because the mainframe, by itself,
does not acquire data the SYSTem:DATA? command and query is enly
usefull for modules.

I Fkde kxk ok dhhokkkhkokkokx SETUP COWJAND AND QUERY EXAMPLE ARK K ARk FTR AR IXT IRk FK
! for the HP 16500B/16501A Logic Analysls System

| AkkkAxARARRAFEFxFXAAY CREATE TRANSFER BUTFER
! Create a puffer large enough for t© 3
!
ASSTGN @Buff TO BUFFER [170000]
1
: wkk kR ok ok okok kKKK Kk INITIALIZE HPIB DEFAULT ADDRESS Ak ARk F ok khkk kok kok ok ok ko dokk
!
REAL Address
Address=707
ASSIGN @Comm TO Address
1
CLEAR SCREEN
t
| %k kkktrrkksx TNTTTIALIZE VARIABLE FOR NUMBER OF 3YTES *¥waswkadiiuwmmxssd
| The variable "Numbytes" contains the number of bytes in the buffer.
1

REAL Nurbytes
Numbytes=0 .
1

| xkxkkxxxkrkvkx RE-INITIALIZE TRANSFER BUFFER POINTERS *%xkd#kkiaionixrsns
3
CONTROL @Buff,
CONTROL @BuZff,
!

3:1
4:0

13-3

270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
£40
450

A o
g0ou

470
480
420
500
510
520
530
540
550
560
570
580
600
610
620
630
640
650
660
670
680
6390
700
710
720

Programming Examples
Transferring the Mainframe Configuration

l EE R R AR EESEEESEEEEEEESES] SEND THE SETUP QUERY FER T EEE SRS LR ERE LS RS &S &S
OUTPUT 707; ":8YSTEM: HEADER ON"
QUTPUT 707;":5YSTEM: LONGFORM ON"

OUTPUT @Cemm; "SELECT 0"

QUTPUT EComm; " :SYSTEM:SETUP?"

!

! AR R A AESEEEEEESEREESE] ENTER THE BLOCK SETUP HEADER RS R EREEEREEEEEEREEEEESE
! Enter the blocx setup header irn the proper format.

1

ENTER @Comm USING "#,B";Byce

PRINT CHRS {Byte);
WHILE Byte<>35

ENTER EComm USING *#,B";Byte
PRINT CHRE (Byte);

D WHILE

ENTER @Comm USING "#,3";Byte

PRINT CHRS (Byte):
Byte=Byte-48

IF Byte=1 THEN EINTER @Comm USING "#,D";Numbytes

IF 3yte=2 THEN ENTER @Comm USING "#,DD";Numbytes

IF Byte=3 THEN ENTER @Corm USINGC "“#,DDD";Numbvies
Byte=4 TEEN ENTER @Comm USING "#,DDDD";Nurbytes
Byte=5 THEN ENTER €@Comm USING "#,DDDDD";Kumbytes
Byte=6 THEN ENTER @Comrm USING "#,DDDDDD";Nunbytes
Byte=7 THEN ENTER @EComm USING "#,2DDDDDD";Numbytes
Byte=8 THEN ENTER EComm USING "#,DDDDDRDDD";Numbytes
PRINT Numbytes

[}

=
=

O H
‘il o'

.! AHHK KR KKK KK R Kk KKk hoh ok ok TRANSER THE SETUP EAR R A S A RS AR R AR SRS EEE RS E S

! Transfer the setup from the rainframe to the buffer.
!
TRANSFER @Comm TQ BBuff;COUNT Numbyies, WATT
1
ENTER @Comm USING "-K";Lengths
PRINT "LENCTH of Length string is";LEN({Length$}
!
PRINT "**** (COT THE SETUP ***=*r
PAUSE
! R R AR R A EE RS EESSE &8 S S SEND ’I‘HE SETUP EE AR R R EEEEEEEEREEESEEREEREEESEEEEESES]
! Make sure buffer is rot empty.
!
IF Numbytes=0 TH=N
PRINT "BUFZER IS5 EMPTVY"
COTO 1170
END IF

13-4

730
740
750
760
770
780
7290
800
810
820
830
840
850
860
870
880
890
900
910
920
930
540
350
360
970
980
920
1000
1010
1020
1030
10490
1050
1060
1670
1080
1090
1100
111¢
1120
1130
11490
1150
1260
1170

Programming Examples
Transferring the Mainframe Configuration

1
l T EEETE R R SRR L R SEND THE SETUP COMD N L EEEE R R RS R

! Send the Setup command
!

QUTPUT @Comm USING "4, 15A";":SYSTEM:SETUP #"
PRINT "SYSTEM:SETUD command has been sent”
PAUSE

1

! Ak kAR K I A AT R T AT RA R XX SEND :“HE BLOCK SETUP ***************‘k**********‘k*
| Send the block setun neader to the mainframe in the proper format.

!

Byte=LEN (VALS (Numbytes))

QUTPUT @Comra JSING "#,B"; (Byte+48)

IF Byte=. THEN OUTPUT &@Comn JSTNG "#,A";VALS (Numbpytes)

IF Byte=2 THEN OUTPUT @Comm USING "#,AA";VALS (Nurbytes)

IF Byte=3 THEN OUT2UT &Comm USING v, AAR"; VALS (Numbytes)

IF Byte=4 TEEN COUTPUT @Comr. USING "#,AAAA";VALS (Nurbytes)

I¥ Byte=5 THEN QUTPUT @Comm USING “#,AAAAA";VAL$(Nurbytes)

IF Byte=6 THEN QUTPUY @Comm USING "#,AAAAAA";VAL$(Numbytes)

IF Byte=7 THEK OJTPUT BComn USTING "4, AARARARA";VALS (Numbytcs)

IF Byte=8 THIN QUTPUT ECorm USING "#,AAAAAAAA“;VALs(Numbytes)

]

\' *********************** SAVE BUFFER POINTERS ***‘k*********‘k***********
| gave the trarnsfer buffer pointer so 1t can be restored after the

! transfer.

!

STATUS @Buzf, 5;5treg

|

! Akkhkk Rrhkhkkrhhhk kdk TRAK’SFER SETUP TO THE H? ’_GSDOB hkkhkkd kT dkrhk kAR Kk h*&
| Transfer the setup from the buffer to the HP 165008 mainframe.

1

TRANSFER @Buff TO @Comm;COUNT Numbytes,WAIT

t

_F P EE R E LR R R RESTORE BUFFER PO:N‘TERS t**********************
| Restore the transfer buffer pointer

1

CONTROL ERusf,3;5treg

}

! hhkhk kA hkrhkddrkhhdRkrrrx SEN:} TERM:NATING LINE FEED e E R E A S L
! Send the terminating Linefeed to properly terminate the setup string.

1

QUTPUT @Comm; ""

}

DRINT ***** SENT THE SETUP ****"

=ND

13-5

Programming Examples
Checking for Intermodule Measurement Completion

420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650

Checking for Intermodule Measurement Completion

This program can be appended to or inserted into another program when you
need to know when an intermodule measurement is complete. If it is at the
end of a program it will tell you when measurement is complete. If you insert
1t into a program, it will halt the program until the current measurement is
complete.

l EE AR EEEEEESEEESEE RS CHECK FOR MEASUREMENT COM?LETE‘ RS R AR FEESEESEREE SRR X
! Enable the MESR register and query the register for a measurement
! complete conaltioen.

!

QUTPUT 707;":8YSTEM:HEADER QFF™®

QUTPUT 707;":8YSTEM: LONGFORM OFF"

!

Status=0

OQUTPIT 707;":MESEQ 1"

OUT2UT 707;":MESR0O?™

ENTER 707;Status

!

! Print the MESR register status.
1

CLZAR SCREEN

PRINT "Measurement complete status 1s ";S8tatus

PRINT "Q = not complere, 1 = corplete”

! Repeat the MESR query until measurement is complete.
WAIT 1

IF Status=1 THEN GOTO 630

GOTO 310

PRINT TA3XY(30,1i53);"Measurement is complete"
]

END

13-6

Cere e

Programming Examples
Sending Queries to the Logic Analysis System

10

20

30

40

50

60

70

80

20

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300

Sending Queries to the Logic Analysis System

This program example contains the steps required to send a query to the
logic analysis system. Sending the query alone only puts the requested
information in an output buffer of the logic analysis system. You must follow
the query with an ENTER statement to transfer the query response to the
controller. When the query response is sent to the logic analysis system, the
query is properly terminated in the logic analyer. If you send the query but
fail to send an ENTER statement, the logic analysis system will display the
error message "Query Interrupted” when it receives the next command from
the controller, and, the query response is lost.

!************************ QJERY EXAMPLE PR R R R EEE R LR R RS

! for the HP 165003/16301A Legic analysis system

! I P E R EEEEEE RS EE R R R R L] OPTIONAL XAk E I * IR AT AARRK AL Tk rkhkhkkhdk
i The following two lines turn the headers an
! that the query name, in its long form, is inc

| guery response.

m en =0

£
ded in the

1 IR EEEEEEEE RS &8 NOTE X EEEEELESE SRS
! If your query response incluces real
! or integer numbers that you may want
! to do statistics or math on later, you
! should turn both header and longform

! off so only the number is returnea.
' **********************i**************

QUTPUT 707;":SYSTEM:HEADER ON"

QUTPUT 707;":SYSTEM:LONGFORM ON"

|

! ***

! Select the mainframe.

! Always & 0 for the HP 16500B/16501A mairnframe.

QUTPUT 707;":8ELECT O

I

! ***********************************t********t************t******
| Dimension a string in which the query response will be entered.
!

DI¥ QueryS[100]

!

1 ***t**********************

13-7

310
320
330
340
350
360
370
380
390
400
£10
420
430
440
450

Programming Examples
Sending Queries to the Logic Analysis System

! Send the query. In this example the MENU? query 1s sent. 2All

! gqueries except tThe SYSTem:DATA and SYSTerm:SETup can be sent with
{ this program.

1

QUJTPUT 707; "MENU?"

!

! LRSS AR AR LR ER R LRSS E R RS SRR SRR TSR EEE RN X
! The two iines that follow transfer the guery response from the

! query buffer to the controiler and then print the response.

!

ENTER 707;Querys

PRINT Quervy$

13-8

Programming Examples
Getting ASCIl Data with PRINt? ALL Query

10
20
30
40
50
&0
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260

Getting ASCII Data with PRINt? ALL Query

This program example shows you how to get ASCII data from a listing
display, like the disk catalog or state listing, using the PRINt? ALL query.
There are two things you must keep in mind:

® You must select the mainframe, which is always SELECT ¢ for the
HP 165008 mainframe.

& You must select the proper menu. The only menus that allow you to use
the PRINt? ALL query are the disk menu and listing menus.

! * ko h ok ok ASC:I DATA Kpkhkk *

!

| This program gets the hard disk directory from the HP 16500B mainframe
! in ASCII form by using the PRINT? ALL query.

!

!**

DIM BlockS[32000]

QUTPUT 707;"EOI ON"

QUTPUT 707;":8YSTZM :EZAD OFF"

QUTPUT 707;":SELZCT Q" ! Always a 0 for the HP 16500B mainframe

1

!

QUTPUT 707:":MENU 0,2" ! Selects the hard alsk menu. Print? All
! will only work in disk menu and _istings.

1

QUTPUT 707;":8YSTEM:PRINTZ? ALL"

ENTER 707 USING "-K';Block$

1

1**

| Now display the ASCII Gata you received.

|

PRINT USING "XK";Block$

t

END

13-9

Programming Examples
Reading the disk with the CATalog? ALL query

10
20
30
40
50
60
70
80
S0
100
110
20
»30
140
150
160
170
180
150
200
210

Reading the disk with the CATalog? ALL query

The following example program reads the catalog of the currently selected
disk drive. The CATALOG? ALL query returns the entire 70-character field.
Because DOS directory entries are 70 characters long, you should use the
CATALOG? ALL query with DOS disks.

! T hkEkhkkx DISK CATALOG *hkkkx Kk

! using the CATALOG? ALL query
I

DIM File$[100]

DIM Specifier$[2]

OUJTPUT 707;":EOQI ON"

QUTPUT 707;":8YSTEM:HEADER QFF"

OQUTPUT 707;":MMEMORY:MSI INTERNALO" ! select the hard drive
QUTPUT 707; ":MMEMORY : CATALOG? ALL" ! send CATALOG? ALL guery
!

ENTER 707 USIKG "#,2A";Specifiers ! read in #8

ENTER 707 USING "#,8D";Length ! read in block Iength

[}
! Read and print each file in the directory
!
TOR I=1 TO Length STEPR 70
ENTER 707 USING "#,70A";File$
PRINT File$§
NEXT T
ENTZR 707 USING "A";Specifiers$ i read i firal line feed
END

13-10

Programming Examples
Reading the Disk with the CATalog? Query

10
20
30
40
50
&0
70
80

a0

100
1i0
120
130
140
150
160
170
180
198G
200
210

Reading the Disk with the CATalog? Query

This example program uses the CATALOG? query without the AT, option
to read the catalog of the currently selected disk drive. However, if you do
not use the ALL option, the query only returns a 51-character field. Keepin
mind if you use this program with a DOS disk, each filename entry will be
truncated at 51 characters.

ok oF WKk DISK CATALOG *wkx KX
using the CATALOGC? guery

DIM File$[100]
DIM Specifiers 2]

OUTPUT 707;":EQL ON"

QUTPUT 707;":SYSTEM:HEADER OFC"

QUTPUT 707;":MMEMORY:MSI INTERNALO" t select the hard drive
OUTPUT 707; " :MMEMORY : CATALOG?" ! send CATALOG? cuery

1

ENTER 707 USING "#,2A": Specifiers ! read 1n #8

ENTER 707 USING “#,8D";Length I read in block length

!

! Read and print each Zile in the directory

!

FOR I=1 TO Length STEF 51
ENTER 707 USING "#,51A";Tlie$
PRINT Files

NEXT I

ENTER 707 USING "A";Specifiers ! read ir final Zine feed

END

13-11

Programming Examples
Printing to the disk

10

20

30

40

50

60

70

80

85

90

00
110
125
120
130
140
150
160
170
180
1590
200
220
220
230
235
240
2350
260
270
280
290
300
3:0
320

Printing to the disk

This program prints acquired data to a disk file. The file can be either on a
LIF or DOS disk. If you print the file to a flexible disk in the DOS format, you
will be able to view the file on a DOS compatible computer using any number

of file utility programs.

! *% %%k kx** PRINTING TO A DISK

FILE *kokk hok Kok ok ok

! This program prirnts the acguired data to a disk file on a floppy disk.
! Io will print co either a LIF or DOS file using the PRINT ALL command.

EXEE R LR R R R R I s R S R E R EE R R R R R]

! This program assumes a .ogic ana.yzer module

! is instaliled in slot 1.

OQUTPUT 707;":SELECT 1" ! Selects the module in siot 1. This
! assumes a logic analyzer module is

! in siot 1.

oUTPUT 707;":MINU 1,7" ! Selects the Listing 1 menu. Print
! will only work in Listing and Disk

3

QUTPUT 707;":8¥YSTEM:PRINT ALL, DISK,

!

'DISKFILE’, INTERNALL"

program
instailed

to disk
menus.,

KRR R R R A R R E R E EE R R R SRR SRR L EEE R EE R SR LR R TR SR SRR R

| Now display catalog to see that the file has been saved on the alsk.

1
DIM 7ile$[100]
DIM Specifiers(2]
QUTPUT 707;":EOT ON"
QUTPUT 707;":8¥YSTEM:HEADER OFF"
oUuTPUT 707; " :MMEMORY :MSI INTERNALL"
QUTPUT 707; " :MMEIMORY:CATALOG? ALL"
ENTER 707 USINC "#,2A";Specifiers
ENTER 707 USING "#,8D";Length
FOR I=1 TO Length ST=ZP 70
ENTER 707 USING "#,70A";Files
PRINT Files
NEXT I
ENTZR 707 USING "A";Speciflers$
END

13-12

TR

Index

! CD command, 11-10 SKEW, 12-11
*CLS command, 8-5 CESE command, 9-10 STARt, 9-24
*ESE command, 8-6 CESR command, 9-11 STOP, 9-26
*ESR command, 8-7 Clear To Send (CTS), 3-5 STORe:CONFig, 11-23
*DN command, 8-9 clock 8YStem:DATA, 10-5
*[ST cormnmand, 8-9 real-time, 9-20 8YStern:SETup, 10-12
*QPC command, 8-11 CME, 6-5 TREE, 12-12
*QOPT command, §-12 Combining commands, 1-10 XWINdow, 9-26
*PRE command, 8§-13 Comma, 1-13 Command errors, 7-3
*RST cammand, 8-14 Command, 1-7, 1-17 Cornrmand mode, 2-3
*SRE command, 8-15 *CLS, 8-5 Command sct organization, 4-9
*3TB command, 8-16 *ESE, 8-6 Command structure, 1-5
*TRG comumand, 8-17 *OPC, 8-11 Command tree, 4-6
*T8T cormmand, 8-18 *PRE, 8-13 SELect, 9-22
*WAI command, 8-19 *RST, 8-14 Cormmand types, 4-6
oy 4B *SRE, 8-15 Commeon commands, 1-10, 46, 8-2
32767, 4-4 *TRG, 8-17 Communication, 1-3
9.9E+37, 4-4 *WAL 8-19 Compound commands, 1-9
=, 4-5 AUToload, 11-8 Configuration file, 1-4
,4-6 BEEPcr, 9-6 Controller mode, 2-3
[1,4-5 CD (change directory, 11-10 Controllers, 1-3
{},4-5 CESE, 9-10 Conventions, 4-5
l,4-5 COPY, 11-11 COPY command, 11-11
DATA, 10-5
A DELote, 12-5 D
Addressed talk/listen mode, 2-3 DOWNload, 11-12 DATA, 10-5
Angular brackets, 4-5 DSP, 10-6 command, 10-5
Arguments, 1-8 EOCL, 9-13 Data bits, 3-10
AUToload command, 11-8 HEADer, 1-17, 10-8 8-Bit mode, 3-10
INITialize, 11-14 Data Carrier Detect (DCD}, 3-5
B INPort, 12-7 DATA command/query, 10-5
Bases, 1-13 INSert, 12-8 Data Communications Equipment, 3-3
BASIC, 1-3 LOAD-CONFig, 11-15 Data mode, 2-3
Baud rate, 3-10 LOAD:1ASScmbler, 11-16 Data Set Ready (DSR), 3-5
BEEPer cornmand, 9-6 LOCKout, 3-12, 9-14 Data Terminal Equipment, 3-3
Bit definitions, 6-4 to 6-5 LONGform, 1-17, 10-9 Data Terminal Ready (DTR), 3-5
Block data, 1-7, 1-21 MENU, §-15 DCE, 3-3
Block length specifier, 10-5, 10-12 MESE, 9-16 DCL, 2-6
Braces, 4-5 MKDir, 11-17 DDE, 6-5
bus addressing MSI, 11-18 Definite-length block response data, 1-21
HP-IB, 24 PACK, 11-19 DELete comumand, 12-5
PRINt, 10-10 Device address, 1-7
c PURGe, 11-20 HP-IB, 2-4
Cable REName, 11-22 RS-232C, 3-11
RS-232C, 3-3 RMODe, 9-19 Device clear, 2-6
CAPability cornrand, 9-7 RTC, 9-20 Device dependent errors, 7-3
Card identification nurmbers, 9-8 SELect, 9-21 Documentation conventions, 4-5
CARDcage command, 9-8 SETColor, 9-23
SETup, 10-12

CATalog command, 11-9

Index-1

Index

DOWNIoad cormmand, 11-12
DSP command, 10-6

DTE, 3-3

Duplicate keywords, 1-10

E
Ellipsis, 4-5
Embedded strings, 1-3, 1-7
Enter statement, 1-3
EOI command, 9-13
ERRor command, 10-7
Error messages, 7-2
ESB, 6-4
Ewvent Status Register, 6-4
Examples

program, 13-2
EXE, 6-5
Execution errors, 7-4
Exponents, 1-13
Extended interface, 3-5

F
File types, 11-13
Fractional values, 1-14

G
GET, 2-6
Group execute trigger, 2-6

H

HEADer command, 1-17, 10-8
Headers, 1-7, 1-9, 1-12

Host language, 1-7

HP 16500L LAN Interface Module, 1-3

ii-iii

HP-IB,2-2 t0 2-3,6-8

HP-IB address, 2-4

HP-IB commands, 6-13

HP-IB device address, 2-4
HP-IB interface, 2-3

HP-IB interface code, 2
HP-IB interface functions, 2-2
HTIMe query, 12-6

I
IEEE 488.1, 2-2, 5-2
IEEE 488.1 bus commands, 2-6
IEEE 488.2, bh-2
1FC, 2-6
Infinity, 4-4
Initialization, 1-4
INITialize command, 11-14
INPort command, 12-7
Input buffer, 5-3
INSert command, 12-8
Instruction headers, 1-7
instruction parameters, 1-8
Instruction syntax, 1-6
Instruction terminator, 1-8
Instructions, 1-6
Instrument address, 2-4
Interface capabilities, 2-3
RS-232C, 3-10
Interface clear, 2-6
Interface code
HP-IB, 2-4
Interface select code
RS-232C, 3-11
INTermodule subsystem, 12-2
Internal errors, 7-4

K
Keyword data, 1-14
Keywords, 4-3

L

LAN programming, 1-3, iii-iii
LCL,6-6

LER coramand, 9-13

Linefeed, 1-8, 4-6
LOAD:CONFig cornmand, 11-15

LOAD:JASSembler command, 11-16

Local, 2-5

Local lockout, 2-5

LOCKout command, 3-12, 9-14
Lengform, 1-12

LONGform command, 1-17, 10-9
Lowercase, 1-12

M

Mainframe commands, 9-2

MAV, 64

measurement complete program example,
13-6

MENY command, 9-15

MESE command, $-16

MESR cormmand, 9-18

MKDir command, 11-17
MMEMory subsystem, 11-2
Mnemonies, 1-14, 4-3

MSB, 6-6

MSG, 6-5

MSI command, 11-18

MSS, 6-4

Msus, 11-3

Multiple numeric variables, 1-22
Multiple program commands, 1-15
Multiple queries, 1-22

Multiple subsystermns, 1-15

N

New Line character, 1-8
NL, 1-8, 4-6

Notaticn conventions, 4-5
Numeric base, 1-20
Numeric bases, 1-13
Numeric data, 1-13
Numcric variables, 1-20

0

OPC, 6-6

Operation Complete, 6-6

OR notation, 4-5

Output buffer, 1-11

Output queue, 5-3

QUTPUT statement, 1-3

Overlapped cormmmand, 8-11, 8-19,9-24 to
9-25

Overlapped cornmands, 4-4

P

PACK command, 11-19
Parallel poll, 6-9

Parallel poll commands, §-14
Parameter syntax ruies, 1-13
Parameters, 1-8

Parity, 3-10

Index-2

index

Parse tree, 5-8

Parser, 5-3

PON, 6-b

PPC, 6-13

PrD, 6-14

PPE, 6-14

PPU, 6-13

PRINt command, 10-10
Printer mode, 2-3
program example

CARDcage, 9-8
CATalog, 11-9
CESE, 9-10
CESR, 9-11
DATA, 10-6
EQL 9-13
ERRor, 10-7
FTIMe, 12-6
HEADcr, 10-8
INPort, 12-7

checking for measurement complete, 13-6 LER, 9-13
getting ASCII data with PRINt ALL gquery, LOCKout, 9-14

13-9

sending queries to the mainframe, 13-7
8Y8Tem:SETup command, 13-3
SYSTem:SETup? query, 13-3

LONGiorm, 10-9
MENU, 9-16
MESE, 9-17
MESR, 9-18

transferring configurativn to analyzer, 13-3 MSI, 11-18

transferring configuration to the

controller, 13-3

Program examples, 4-12, 13-2
Program message syntax, 1-6
Program message terminater, 1-8

Program syntax, 1-6
Progranming

over the LAN, 1-3, iii-1ii
Programming conventions, 4-6

Protocol, 3-10, 5-4
None, 3-10
XON/XOFF, 3-10

Protocol exceptions, 5-5

Protocols, 5-3

PURGe command, 11-20

Q

Query, 1-7, 1-11,1-17
*ESE, 8-6
*ESR, 8-7
*[DN, 8-9
*[ST, 8-9
*OPC, 8-11
*OPT, 8-12
*PRE, 8-13
*SRE, 8-16
*3TB, §-16
*TST, 8-18
AUToload, 11-8
BEEPcr, 9-6
CAPability, 9-7

PRINt, 10-11
RMODe, 9-1%
SELcct, 9-21
SETColor, 3-24
SETup, 10-12
SKEW, 12-11
SYSTem:DATA, 10-6
SYStem:SETup, 10-12
TREE, 12-13
TTIMe, 12-13
UPLoad, 11-24
Query errors, 7-5
query program cxamptle, 13-7
Query responses, 1-16, 4-4
Question mark, 1-11
QYE, 6-5

R

real-time clock, 9-20
Receive Data (RD), 3-4 to 3-5
Remotce, 2-5

Remote enable, 2-5

REN, 2-5

REName command, 11-22
Request To Send (RTS), 3-5
Response data, 1-21
Responses, 1-17

RMODe command, 9-19
Root, 4-8

RQC, 6-5

RQS, 6-5

RS-232C, 3-2,3-11,56-2
RTC (real time clock), 9-20

S
8DC, 2-6
SELect command, 3-21
Select command tree, 9-22
Selected device clear, 2-6
Sequential commands, 4-4
Serial poll, 6-8
Service Reguest Enable Register, 64
SETColor command, 9-23
SETup, 10-12
SETup command/query, 10-12 to 10-13
Shortform, 1-12
Simple commands, 1-9
SKEW command, 12-11
Spaces, 1-8
Square brackets, 4-5
STARt command, 9-24
Status, 1-23, 6-2, 8-3
Status byte, 6-6
Status registers, 1-23, 8-3
Status reporting, 6-2
Stop bits, 3-10
STOP command, 9-25
STORe:CONFig command, 11-23
String data, 1-14
String variables, 1-15
Subsystem
INTermodule, 12-2
MMEMory, 11-2
SYSTem, 10-2
Subsystem commands, 4-6
Suffix multiplier, 5-9
Suffix units, 5-10
Syntax diagram
Common commands, 8—4
INTermodule subsystem, 12-3
Mainframne commands, 9-3 to 9-4
MMEMory subsystem, 11-4 to 11-65, 11-7
SYSTem subsystem, 10-3
Syntax diagrams
[EEE 488.2,6-5
System commands, 4-6
system modules

Index-3

Index

talking to, 14
5YSTem subsystern, 10-2
SYSTem:SETup command program
example, 13-3
SYSTem:SETup query program cxample,
13-3

T

Talk only mode, 2-3
Terminator, 1-8

Three-wire Interface, 3-4
Trailing dots, 4-6

Transmit Data (TD), 3-4 to 3-5
TREE command, 12-12
Truncation rule, 4-3

TTIMe query, 12-13

u

Units, 1-13

UPLovad cornmand, 11-24
Uppercase, 1-12

URQ, 6-5

w
White space, 1-8

X

XWINdow command, 9-26
XXX, 4-5,4-8

XXX {meaning of}, 1-7

Index-4

© Copyright Hewlett-
Packard Company 1987,
1990, 1993, 1954

All Rights Reserved.,

Reproduction, adaptation, or
translation without prior
written permission is
prohibited, except as allowed
under the copyright laws.

Document Warranty

The information contained in
this document is subject to
change without notice.
Hewlett-Packard makes
no warranty of any kind
with regard to this
material, including, but
not limited to, the implied
warranties of
merchantability or fitness
for a particular purpose.
Hewlett-Packard shall not be
liable for errors contained
herein or for damages in
connection with the
furnishing, performance, or
use of this matcrial.

Safety

This apparatus has been
designed and tested in
accordance with IEC
Publication 348, Safety
Requirernents for Measuring
Apparatus, and has been
supplied int a safe condition.
This is a Safety Class |
instrument (provided with
terminal for protective
earthing). Before applying
power, verify that the correct
safety precautions are taken
(see the following warnings).
In addition, note the external
markings on the instrument
that are described under
"Safety Symbols."

Warning

e Before turning on the
instrument, you must connect
the protective earth terminal
of the instrument to the
protective conductor of the
{mains) power cord. The
rains plug shall only be
inserted in a socket outlet
provided with a protective
earth contact. You must not
negate the protective action
by using an extension cord
{power cable) without a
protective cenductor
(grournding). Grounding onc
conductor of a two-conductor
outlet is not sufficient
protcction.

e Only fuses with the
required rated current,
voltage, and specificd type
(normal biow, time delay,
ete.) should be used. Do not
use repaired fuses or
short-circuited fuseholders.
To do so could cause a shock
of fire hazard.

& Service instructions are for
trained service personnel. To
avoid dangerous electric
shock, do not perform any
service undess qualified to do
so. Do not attempt internal
service or adjustment unless
another person, capable of
rendering first aid and
resuscitation, is present,

[f you energize this
instrument by an auto
transformer {for voltage
reduction), make surc the
commen terminal is
connected to the earth
terminal of the power source.

® Whenever it is likely that
the ground protection is
impaired, you must make the
instrument inoperative and
secure it against any
unintended operation.

& Do not operate the
instrument in the presence of
flasnmablc gasses or fumes.
Operation of any electrical
instrument in such an
environment constitutes &
definite safety hazard.

Do not install substitute
parts or perform any
unautharized modification to
the instrument.

e (Capacitors inside the
instrument may retain a
charge even if the instrument
is disconnected from its
source of supply.

s [Use caution when exposing
or handling the CRT.
Handling or replacing the
CRT shall be done only by
qualified maintenance
personnel.

Safety Symbols

A

Instruction manual symbol:
the product is marked with
this symbol when it is
necessary for you to refer to
the instruction marnual in
order to protect against
damage to the product.

}

Hazardcus voltage symbol.

Earth terminal symbal: Used
to indicate a cireuit commaon
connected to grounded
chassis,

WARNING

The Warning sign denotes a
hazard. It calls attention to a
procedurc, practice, or the
like, which, if not correctly
performed or adhered to,
could result in personak
injury. Do not proceed
beyond a Warning sign until
the indicated conditions are
fully understood and met.

CAUTION

The Caution sign denotes a
hazard. It calls attcntion 1o
an operating procedure,
practice, or the like, which, if
not correctly performed or
adhered te, could result in
damage to or destruction of
part or all of the product. Do
not procecd beyond a
Cauticn symbol until the
indicated conditions arc fully
undcrstood or met.

Hewlett-Packard
P.0. Box 2197

1900 Garden of the Gods Road

Colorado Springs, CO 80801

Product Warranty

This Hewlett-Packard
product has s warranty
against defects in material
and workmanship for & peried
of one vear from date of
shipment. During the
warranty period,
Hewlett-Packard Cormpany
will, at its option, either
repair or replace products
that prove to be defeetive.

For warranty service or
repair, this product must be
returned to a scrvice facility
designated by
Hewlett-Packard.

For products retumed to
Hewlett-Packard for warranty
service, the Buyer shall
prepay shipping charges to
Hewlett-Packard and
Hewlett-Packard shall pay
shipping charges to return
the product to the Buyer.
However, the Buyer shall pay
all shipping charges, duties,
and taxes for products
returned to Hewlett-Packard
from another country.
Hewlett-Packard warrants
that its software and firmware
designated by
Hewleti-Packard for usc with
an instrument will execute its
programiming instructions
when properly installed on
that instrument.
Hewlett-Packard does not
warrant that the operation of
the instnumnent software, or
firmware will be
uninterrupted or error free,

Limitation of Warranty

The foregoing warranty shatl
not apply to defects resulting
frora improper or inadequate
maintenance by the Buyer,
Buyer-supplied software or
interfacing, unauthorized
modification or misuse,
operation cutside of the
cnvironmental specifications
Tor the product, or improper
site preparation or
maintenance.

No other warranty is
expressed or implied.
Hewlett-Packard
specifically disclaims the
implied warranties of
merchantability or fitness
for a particular purpose.

Exclusive Remedies

The remedies provided
herein are the buyer’s solc
and exclusive remedies.
Hewlett-Packard shall not be
liable for any direct, indirect,
special, incidental, or
consequential damages,
whether based on contract,
tort, or any other legal theory.

Assistance

Product maintenance
agreements and other
custorer assistance
agreements are available for
Hewlett-Packard products.
For any assistance, contact
your nearest Hewlett-Packard
Sales Office.

Certification
Hewlett-Packard Company
certifies that this product met
its published specifications at.
the time of shipment from the
factory. Hewlctt-Packard
further certifies that its
calibration measurements are
traceabie to the United States
National Institute of
Standards and Technology, to
the extent allowed by the
Institute’s calibration facility,
and to the calibration
facilities of other
International Standards
QOrganization members.

About this edition

This is the first edition of the
HP 16500B/16501A
Programmer’s Guide.

Publication number
16500-87009

Printed in USA.
Edition dates are as follows:
Second edition, April 1994

New editions are complete
revisions of the manual.
Update packages, which arc
issued between cditions,
contam additional and
replacement pages to be
merged inte the manual by
you. The dates on the title
page change only when a new
edition is published.

A software or firmware code
may be printed before the
date. This codc indicates the
version level of the software
or firmware of this product at
the time the manual or
update was issued. Many
product updates do not
require manual changes; and,
cenversely, manual
corrections may be done
without accompanying
product changes. Therefore,
do not expect a2 one-to-one
correspendence hetween
product updates and manual
updates.

The following list of pages
gives the date of the current
edition and of any changed
rages to that edition,

All pages original edition

